

LECTURE NOTES

ON

Digital Electronics & Microprocessor

For

5th sem, Electrical Engg. (Diploma)

GOVERNMENT POLYTECHNIC, BARGARH

Prepared by:

Lect. Rashmita Gouda

(Lecturer in Instrumentation & Control Engg.)

VISION AND MISSION OF ELECTRICAL

ENGINEERING DEPARTMENT

Vision of the Department

 To produce Electrical Engineering professionals who

can contribute for socio-economic and technological

development to meet global needs.

Mission of the Department

 M1 - To strengthen academic infrastructure leading to

quality professional by using modern technical tools

and technologies

 M2 - To impart innovative knowledge among the

students and make more industry-institution programs

to make them successful professionals for serving the

society

 M3 - To provide a learning environment to improve

problem solving abilities, leadership abilities, ethical

responsibilities and lifelong learning.

SYLLABUS
Name of the Course: Diploma in Electrical Engineering Course code: Th.3

Semester: 4th Total Period: 75 (60L + 15T)

Examination: 3hrs Theory periods: 4P / week

Internal Assessment: 20 Tutorial: 1 P / week

Maximum marks: 100 End Semester Examination: 80

A. RATIONALE

The tremendous power and usefulness of digital electronics can be seen from the wide variety of

industrial and consumer products, such as automated industrial machinery, computers,

microprocessors, pocket calculators, digital watches and clocks, TV games, etc., Which are based

on the principles of digital electronics? The years of applications of digital electronics have been

increasing every day. In fact, digital systems have invaded all walks of life. This subject will very

much helpful for student to understand clearly about the developmental concept of digital devices.

B. OBJECTIVES

On comprehend of the subject, the student will able to

1. Comprehend the systems and codes.

2. Familiar with logic gates.

3. Realize logic expressions using gates.

4. Construct and verify the operation of arithmetic & logic circuits

5. Understand and appreciate the relevance of combinational circuits.

6. Know various logic families & flops.

7. Architecture & different instructions of 8085 microprocessor.

8. Assembly language programs and write programs & functions of the interfacing chips like 8255,

8259, 8259 etc.

C: COURSE CONTENT IN TERMS OF SPECIFIC OBJECTIVES

 1. BASICS OF DIGITAL ELECTRONICS

 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.

1.2 Binary addition, subtraction, Multiplication and Division.

 1.3 1‘s complement and 2‘s complement numbers for a binary number

 1.4 Subtraction of binary numbers in 2‘s complement method.

 1.5 Use of weighted and Un-weighted codes & write Binary equivalent number for a number in

8421, Excess-3 and Gray Code and vice-versa.

 1.6 Importance of parity Bit.

 1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.

 1.8 Realize AND, OR, NOT operations using NAND, NOR gates.

 1.9 Different postulates and De-Morgan‘s theorems in Boolean algebra.

1.10 Use Of Boolean Algebra For Simplification Of Logic Expression

1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression

Using K-Map.

 2. COMBINATIONAL LOGIC CIRCUITS

 2.1 Give the concept of combinational logic circuits.

 2.2 Half adder circuit and verify its functionality using truth table.

 2.3 Realize a Half-adder using NAND gates only and NOR gates only.

 2.4 Full adder circuit and explain its operation with truth table.

 2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table

 2.6 Full subtractor circuit and explain its operation with truth table.

 2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer

 2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.

 2.9 Working of Two bit magnitude comparator.

 3. SEQUENTIAL LOGIC CIRCUITS

 3.1 Give the idea of Sequential logic circuits.

 3.2 State the necessity of clock and give the concept of level clocking and edge triggering,

 3.3 Clocked SR flip flop with preset and clear inputs.

 3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table

 3.6 Concept of race around condition and study of master slave JK flip flop.

 3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.

 3.8 Applications of flip flops.

 3.9 Define modulus of a counter

3.10 4-bit asynchronous counter and its timing diagram.

3.11 Asynchronous decade counter.

3.12 4-bit synchronous counter.

3.13 Distinguish between synchronous and asynchronous counters.

3.14 State the need for a Register and list the four types of registers.

3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.

4. 8085 MICROPROCESSOR

4.1 Introduction to Microprocessors, Microcomputers

4.2 Architecture of Intel 8085A Microprocessor and description of each block.

4.3 Pin diagram and description.

4.4 Stack, Stack pointer & stack top

4.5 Interrupts

4.6 Opcode & Operand,

4.7 Differentiate between one byte, two byte & three byte instruction with example.

4.8 Instruction set of 8085 example

4.9 Addressing mode

4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State

4.11 Timing Diagram for memory read, memory write, I/O read, I/O write

4.12 Timing Diagram for 8085 instruction

4.13 Counter and time delay.

4. 14 Simple assembly language programming of 8085.

5. INTERFACING AND SUPPORT CHIPS

5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping

5.2 Functional block diagram and description of each block of Programmable peripheral

interface Intel 8255 ,

5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light

Controller

Learning Resources:

1. Fundamental of Digital Electronics, Ananda Kumar PHI

2. Microprocessor Architecture programming & Application with 8085, R.S Gaonkar

3. Fundamentals of Microprocessor & Micro Computers, B.Ram Dhanpat rai

INDEX

S. No

CHAPTER
Topic

1

I

BASICS OF DIGITAL ELECTRONICS

2

II

COMBINATIONAL LOGIC CIRCUITS

3

III

SEQUENTIAL LOGIC CIRCUITS

4

IV

8085 MICROPROCESSOR

5

V

INTERFACING AND SUPPORT CHIPS

CHAPTER – 1:BASICS OF DIGITAL ELECTRONICS

INTRODUCTION ABOUT DIGITAL SYSTEM

A Digital system is an interconnection of digital modules and it is a system that manipulates discrete

elements of information that is represented internally in the binary form.

Now a day’s digital systems are used in wide variety of industrial and consumer products such as

automated industrial machinery, pocket calculators, microprocessors, digital computers, digital watches, TV

games and signal processing and so on.

Characteristics of Digital systems

 Digital systems manipulate discrete elements of information.

 Discrete elements are nothing but the digits such as 10 decimal digits or 26 letters of alphabetsand

so on.

 Digital systems use physical quantities called signals to represent discrete elements.

 In digital systems, the signals have two discrete values and are therefore said to be binary.

 A signal in digital system represents one binary digit called a bit. The bit has a value either 0 or 1.

Analog systems vs Digital systems

Analog system process information that varies continuously i.e; they process time varying signals

that can take on any values across a continuous range of voltage, current or any physical parameter.

Digital systems use digital circuits that can process digital signals which can take either 0 or 1 for

binary system.

DIGITAL LOGIC DESIGN Page no. 1

DIGITAL LOGIC DESIGN Page no. 2

Advantages of Digital system over Analog system

1. Ease of programmability

The digital systems can be used for different applications by simply changing the program without

additional changes in hardware.

2. Reduction in cost of hardware

The cost of hardware gets reduced by use of digital components and this has been possible due to

advances in IC technology. With ICs the number of components that can be placed in a given area of Silicon

are increased which helps in cost reduction.

3. gh speed

Digital processing of data ensures high speed of operation which is possible due to advances in

Digital Signal Processing.

4. High Reliability

Digital systems are highly reliable one of the reasons for that is use of error correction codes.

5. Design is easy

The design of digital systems which require use of Boolean algebra and other digital techniques is

easier compared to analog designing.

6. Result can be reproduced easily

Since the output of digital systems unlike analog systems is independent of temperature, noise,

humidity and other characteristics of components the reproducibility of results is higher in digital systems

than in analog systems.

Disadvantages of Digital Systems

 Use more energy than analog circuits to accomplish the same tasks, thus producing more heat as

well.

 Digital circuits are often fragile, in that if a single piece of digital data is lost or misinterpreted the

meaning of large blocks of related data can completely change.

 Digital computer manipulates discrete elements of information by means of a binary code.

 Quantization error during analog signal sampling.

DIGITAL LOGIC DESIGN Page no. 3

NUMBER SYSTEM

Number system is a basis for counting varies items. Modern computers communicate and operate

with binary numbers which use only the digits 0 &1. Basic number system used by humans is Decimal

number system.

For Ex: Let us consider decimal number 18. This number is represented in binary as 10010.

We observe that binary number system take more digits to represent the decimal number. For large

numbers we have to deal with very large binary strings. So this fact gave rise to three new number systems.

i) Octal number systems

ii) Hexa Decimal number system

iii) Binary Coded Decimal number(BCD) system

To define any number system we have to specify

 Base of the number system such as 2,8,10 or 16.

 The base decides the total number of digits available in that number system.

 First digit in the number system is always zero and last digit in the number system is always

base-1.

Binary number system:

The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. In

binary system weight is expressed as power of 2.

The left most bit, which has the greatest weight is called the Most Significant Bit (MSB). And the

right most bit which has the least weight is called Least Significant Bit (LSB).

DIGITAL LOGIC DESIGN Page no. 4

For Ex: 1001.012 = [(1) × 23] + [(0) × 22] + [(0) × 21] + [(1) × 20] + [(0) × 2-1] + [

(1) × 22]

1001.012 = [1 × 8] + [0 × 4] + [0 × 2] + [1 × 1] + [0 × 0.5] + [1 × 0.25]

1001.012 = 9.2510

Decimal Number system

The decimal system has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10.

Octal Number System

Digital systems operate only on binary numbers. Since binary numbers are often very long, two

shorthand notations, octal and hexadecimal, are used for representing large binary numbers. Octal systems

use a base or radix of 8. It uses first eight digits of decimal number system. Thus it has digits from 0 to 7.

Hexa Decimal Number System

The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to

9 are used as the first ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which

represent the values 10, 11,12,13,14 and 15 respectively.

Decima

l

Binar

y

Octal Hexadeci

mal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

DIGITAL LOGIC DESIGN Page no. 5

Hexa to binary conversion

Number Base conversions

The human beings use decimal number system while computer uses binary number system.

Therefore it is necessary to convert decimal number system into its equivalent binary.

i) Binary to octal number conversion

ii) Binary to hexa decimal number conversion

iii) Octal to binary Conversion

iv)

v) Octal to Decimal conversion

Ex: convert 4057.068 to octal

=4x83+0x82+5x81+7x80+0x8-1+6x8-2

=2048+0+40+7+0+0.0937

DIGITAL LOGIC DESIGN Page no. 6

=2095.093710

vi) Decimal to Octal Conversion

Ex: convert 378.9310 to octal

37810 to octal: Successive division:

8 | 378

|

8 |47 --- 2

|

8 |5 --- 7 ↑

|

0 --- 5

=5728

0.9310 to octal :

0.93x8=7.44

0.44x8=3.52 ↓

0.53x8=4.16

0.16x8=1.28

=0.73418

378.9310=572.73418

vii) Hexadecimal to Decimal Conversion

Ex: 5C716 to decimal

=(5x162)+(C x161)+ (7 x160)

=1280+192+7

=14710

viii) Decimal to Hexadecimal Conversion

Ex: 2598.67510

1 6 2598

16 162 -6

10

= A26 (16)

-2

DIGITAL LOGIC DESIGN Page no. 7

0.67510=0.675x16 -- 10.8

=0.800x16 -- 12.8 ↓

=0.800x16 -- 12.8

=0.800x16 -- 12.8

=0.ACCC16

2598.67510 = A26.ACCC16

ix) Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary & then the binary no. to

hexadecimal.

Ex: 756.6038

7 5 6 . 6 0 3

111 101 110 . 110 000 011

0001 1110 1110 . 1100 0001 1000

1 E E . C 1 8

x) Hexadecimal to octal conversion:

First convert the given hexadecimal no. to binary & then the binary no. to octal.

Ex: B9F.AE16

B 9 F . A E

1011 1001 1111 . 1010 1110

101 110 011 111 . 101 011 100

5 6 3 7 . 5 3 4

=5637.534

Complements:

In digital computers to simplify the subtraction operation & for logical manipulation complements

are used. There are two types of complements used in each radix system.

i) The radix complement or r’s complement

ii) The diminished radix complement or (r-1)’s complement

DIGITAL LOGIC DESIGN Page no. 8

Representation of signed no.s binary arithmetic in computers:

 Two ways of rep signed no.s

1. Sign Magnitude form

2. Complemented form

 Two complimented forms

1. 1‘s compliment form

2. 2‘s compliment form

Advantage of performing subtraction by the compliment method is reduction in the hardware.(

instead of addition & subtraction only adding ckt‘s are needed.)

i. e, subtraction is also performed by adders only.

Instead of subtracting one no. from other the compliment of the subtrahend is added to minuend.

In sign magnitude form, an additional bit called the sign bit is placed in front of the no. If the sign

bit is 0, the no. is +ve, If it is a 1, the no is _ve.

Ex:

0 1 0 1 0 0 1

↓

Sign bit =+41 magnitude

↑

1 1 0 1 0 0 1

= -41

Note: manipulation is necessary to add a +ve no to a –ve no

Representation of signed no.s using 2’s or 1’s complement method:

If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in front

of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1‘s compliment form &a sign bit 1

is placed in front of the MSB.

Ex:

Given no. Sign mag form 2‘s comp form 1‘s comp form

01101 +13 +13 +13

010111 +23 +23 +23

10111 -7 -7 -8

1101010 -42 -22 -21

DIGITAL LOGIC DESIGN Page no. 9

Special case in 2’s comp representation:

Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the decimal

equivalent is -2n , where n is the no of bits in the magnitude .

Ex: 1000= -8 & 10000=-16

Characteristics of 2’s compliment no.s:

Properties:

1. There is one unique zero

2. 2‘s comp of 0 is 0

3. The leftmost bit can‘t be used to express a quantity . it is a 0 no. is +ve.

4. For an n-bit word which includes the sign bit there are (2n-1-1) +ve integers,

2n-1 –ve integers & one 0 , for a total of 2n uniquestates.

5. Significant information is containd in the 1‘s of the +ve no.s & 0‘s of the _ve

no.s

6. A _ve no. may be converted into a +ve no. by finding its 2‘s comp.

Signed binary numbers:

Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0011 0011 0011

+0 0000 0000 0000

-0 -- 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

8 1000 -- --

DIGITAL LOGIC DESIGN Page no. 10

Methods of obtaining 2’s comp of a no:

 In 3 ways

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1‘s & 1‘s to 0‘s) &

then adding 1.

2. By subtracting the given n bit no N from 2n

3. Starting at the LSB , copying down each bit upto & including the first 1 bit

encountered , and complimenting the remaining bits.

Ex: Express -45 in 8 bit 2‘s comp form

+45 in 8 bit form is 00101101

I method:

1‘s comp of 00101101 & the add 1

00101101

11010010

+1

 _ _ _ _ _ _ _ _ _ _

11010011 is 2‘s comp form

II method:

Subtract the given no. N from 2n

2n = 100000000

Subtract 45= -00101101

III method:

+1

 _ _ _

11010011 is 2‘s comp

Original no: 00101101

Copy up to First 1 bit 1

Compliment remaining : 1101001

bits 11010011

Ex:

DIGITAL LOGIC DESIGN Page no. 11

-73.75 in 12 bit 2‘compform

I method

01001001.1100

10110110.0011

+1

10110110.0100 is 2‘s

II method:

28 = 100000000.0000

Sub 73.75=-01001001.1100

10110110.0100 is 2‘s comp

III method :

Orginalno : 01001001.1100

Copy up to 1‘st bit 100

Comp the remaining bits: 10110110.0

10110110.0100

2’s compliment Arithmetic:

 The 2‘s comp system is used to rep –ve no.s using modulus arithmetic . The word length

of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no . the result will be only

of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus arithmetic.

Ex:1100+1111=1011

 In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there

is a carry out , ignore it , look at the sign bit I,e, MSB of the sum term .If the MSB is a

0, the result is positive.& it is in true binary form. If the MSB is a ` (carry in or no carry at

all) the result is negative.& is in its 2‘s comp form. Take its 2‘s comp to find its magnitude

in binary.

Ex:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic:

+14

-14

= 00001110

= 11110010

2‘s comp

+46 = 00101110

-14 =+11110010 2‘s comp form of -14

DIGITAL LOGIC DESIGN Page no. 12

-32 (1)00100000 ignore carry

Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary

form. So the result is +00100000=+32.

EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic

+75

-75

 = 01001011

=10110101

2‘s comp

+26

-75

= 00011010

=+10110101

2‘s comp form of -75

-49 11001111 No carry

No carry , MSB is a 1, result is _ve & is in 2‘s comp. The magnitude is 2‘s comp of

11001111. i.e, 00110001 = 49. so result is -49

Ex: add -45.75 to +87.5 using 12 bit arithmetic

+87.5 = 01010111.1000

-45.75=+11010010.0100

-41.75 (1)00101001.1100 ignore carry

MSB is 0, result is +ve. =+41.75

1’s compliment of n number:

• It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a

no, is subtracting each bit of the no. form 1.This complemented value rep the –

ve of the original no. One of the difficulties of using 1‘s comp is its rep o f zero.

Both 00000000 & its 1‘s comp 11111111 rep zero.

• The 00000000 called +ve zero& 11111111 called –ve zero.

Ex: -99 & -77.25 in 8 bit 1‘s comp

+99 = 01100011

-99 = 10011100

+77.25 = 01001101.0100

-77.25 = 10110010.1011

1’s compliment arithmetic:

In 1‘s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If there is a

carryout , bring the carry around & add it to the LSB called the end around carry. Look at the

sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB is a 1 (carry or no

carry), the result is –ve & is in its is comp form .Take its 1‘s comp to get the magnitude inn binary.

DIGITAL LOGIC DESIGN Page no. 13

Ex: Subtract 14 from 25 using 8 bit 1‘s EX: ADD -25 to +14

25 = 00011001 +14 = 00001110

-45 = 11110001 -25 =+11100110

+11 (1)00001010

+1

-11 11110100

 No carry MSB =1

 00001011 result=-ve=-1110

MSB is a 0 so result is +ve (binary)

=+1110

Binary codes

Binary codes are codes which are represented in binary system with modification from the

original ones.

Weighted Binary codes

Non Weighted Codes

Weighted binary codes are those which obey the positional weighting principles, each

position of the number represents a specific weight. The binary counting sequence is

an example.

Reflective Code

A code is said to be reflective when code for 9 is complement for the code for 0, and

DIGITAL LOGIC DESIGN Page no. 14

so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are

reflective, whereas the 8421 code is not.

Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary

representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each position

within the binary number is not assigned a fixed value. Ex: Excess-3 code

Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code derives

its name from the fact that each binary code is the corresponding 8421 code plus

0011(3).

Gray Code

The gray code belongs to a class of codes called minimum change codes, in which

only one bit in the code changes when moving from one code to the next. The Gray code

is non-weighted code, as the position of bit does not contain any weight. The gray

code is a reflective digital code which has the special property that any two subsequent

numbers codes differ by only one bit. This is also called a unit- distance code. In digital

Gray code has got a special place.

DIGITAL LOGIC DESIGN Page no. 15

Binary to Gray Conversion

Gray Code MSB is binary code MSB.

Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.

MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

8421 BCD code (Natural BCD code):

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes.

Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful

for mathematical operations. The advantage of this code is its case of conversion to & from

decimal. It is less efficient than the pure binary, it require more bits.

Ex: 14→1110 in binary

But as 0001 0100 in 8421 ode.

The disadvantage of the BCD code is that , arithmetic operations are more complex than

they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in these

codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is, the rules

of binary addition 8421 no, but only to the individual 4 bit groups.

BCD Addition:

It is individually adding the corresponding digits of the decimal no,s expressed in

4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal code

, no correction is needed .If there is a carry out of one group to the next group or if the sum term is

an illegal code then 610(0100) is added to the sum term of that group & the resulting carry is added

to the next group.

Ex: Perform decimal additions in 8421 code

(a)25+13

In BCD 25= 0010 0101

In BCD +13 =+0001 0011

38 0011 1000

No carry , no illegal code .This is the corrected sum

DIGITAL LOGIC DESIGN Page no. 16

(b). 679.6 + 536.8

679.6 = 0110 0111 1001 .0110 in BCD

+536.8 = +0101 0011 0010 .1000 in BCD

 _

1216.4 1011 1010 0110 . 1110 illegal codes

 +0110 + 0011 +0110 . + 0110 add 0110 to each

(1)0001 (1)0000 (1)0101 . (1)0100 propagate carry

/ / / /

 +1 +1 +1 +1

0001 0010 0001 0110 . 0100

1 2 1 6 . 4

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from

the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no

borrow from the next group , then 610(0110)is subtracted from the difference term of this group.

(a)38-15

In BCD 38= 0011 1000

In BCD -15 = -0001 0101

23 0010 0011

No borrow, so correct difference.

.(b) 206.7-147.8

206.7 = 0010 0000 0110 . 0111 in BCD

-147.8 = -0001 0100 0111 . 0110 in BCD

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

58.9 0000 1011 1110 . 1111 borrows are present

-0110 -0110 . -0110 subtract 0110

0101 1000 . 1001

DIGITAL LOGIC DESIGN Page no. 17

BCD Subtraction using 9’s & 10’s compliment methods:

Form the 9‘s & 10‘s compliment of the decimal subtrahend & encode that no. in

the 8421 code . the resulting BCD no.s are then added.

EX: 305.5 – 168.8

305.5 = 305.5

-168.8= +83.1 9‘s comp of -168.8

 _ _

(1)136.6

+1 end around carry

in BCD

(1)0001 0011 0110 . 0110

+1 End around carry

0001 0011 0110 . 0111

= 136.7

Excess three(xs-3)code:

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421 codeword

plus 0011(3).It is a sequential code & therefore , can be used for arithmetic operations..It is a self-

complementing code.s o the subtraction by the method of compliment addition is more direct in

xs-3 code than that in 8421 code. The xs-3 code has six invalid states 0000,0010,1101,1110,1111..

It has interesting properties when used in addition & subtraction.

Excess-3 Addition:

Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If there

is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the sum

term of those groups (because when 2 decimal digits are added in xs-3 & there is no carry , result

in xs-6). If there is a carry out, add 0011 to the sum term of those groups(because when there is a

carry, the invalid states are skipped and the result is normal binary).

 136.7 corrected difference
305.510 = 0011 0000 0101 . 0101
+831.110 = +1000 0011 0001 . 0001 9‘s comp of 1

68.8

_

 +1011 0011 0110 . 0110 1011 is illegal code
 +0110 add 0110

DIGITAL LOGIC DESIGN Page no. 18

EX: 37 0110 1010

 +28

 _

_

+0101

_ _

_

1011

_ _ _ _ _

65

1011

(1)0101 carry generated
 +1 propagate carry

 _ _ _ _ _ _

1100 0101 add 0011 to correct 0101 &

-0011 +0011 subtract 0011 to correct 1100

Excess -3 (XS-3) Subtraction:

 _ _ _ _ _ _ _ _

1001 1000 =6510

Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the

corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the

next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are

subtracted in xs-3 & there is no borrow , result is normal binary). I f there is a borrow , subtract

0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states ,

result is in xs-6)

Ex: 267-175

267 = 0101 1001 1010

-175= -0100 1010 1000

 _ _ _ _ _ _ _ _

0000 1111 0010

+0011 -0011 +0011

0011 1100 +0011 =9210

DIGITAL LOGIC DESIGN Page no. 19

Xs-3 subtraction using 9’s & 10’s compliment methods:

Subtraction is performed by the 9‘s compliment or 10‘s compliment

Ex:687-348 The subtrahend (348) xs -3 code & its compliment are:

9‘s comp of 348 = 651

Xs-3 code of 348 = 0110 0111 1011

1‘s comp of 348 in xs-3 = 1001 1000 0100

Xs=3 code of 348 in xs=3 = 1001 1000 0100

687 687

-348 → +651 9‘s compl of 348

339 (1)338

+1 end around carry

 _

339 corrected difference in decimal

 _ _ _ _ _ _ _ _ _ _

_ (1)0010 (1)0011 1110 carry generated

⁄⁄

+1 +1 propagate carry

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

(1)0011 0010 1110

+1 end around carry

 _ _ _ _ _ _ _ _ _ _ _ _ _ _

0011 0011 1111 (correct 1111 by sub0011 and

+0011

 _ _ _

+0011

_ _ _ _

_ _

+0011 correct both groups of 0011 by

_ _ _ adding 0011)

0110 0110 1100 corrected diff in xs-3 = 33010

1001 1011 1010 687 in xs-3
+1001 1000 0100 1‘s comp 348 in xs-3

DIGITAL LOGIC DESIGN Page no. 20

The Gray code (reflective –code):

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a

BCD code . It is a cyclic code because successive code words in this code differ in one bit position

only i.e, it is a unit distance code.Popular of the unit distance code.It is also a reflective code

i.e,both reflective & unit distance. The n least significant bits for 2n through 2n+1-1 are the mirror

images of thosr for 0 through 2n-1.An N bit gray code can be obtained by reflecting an N- 1 bit

code about an axis at the end of the code, & putting the MSB of 0 above the axis & the MSB of 1

below the axis.

Reflection of gray codes:

Gray Code
Decimal

1 bit 2 bit 3 bit 4 bit 4 bit binary

0 00 000 0000 0 0000

1 01 001 0001 1 0001

 11 011 0011 2 0010

10 010 0010 3 0011

 110 0110 4 0100

111 0111 5 0101

101 0101 6 0110

110 0100 7 0111

 1100

1101

1111

1110

1010

1011

1001

1000

8

9

10

11

12

13

14

15

1000

1001

1010

1011

1100

1101

1110

1111

DIGITAL LOGIC DESIGN Page no. 21

Binary codes block diagram

Error – Detecting codes: When binary data is transmitted & processed,it is susceptible to noise

that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital systems

must be accurate to the digit, error can pose a problem. Several schemes have been devised to

detect the occurrence of a single bit error in a binary word, so that whenever such an error occurs

the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as parity

bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd parity, the

parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit in the word including

the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter

such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity

0 0000 1 0

1 0001 0 1

2 0010 0 1

3 0011 1 0

4 0100 0 1

5 0100 1 0

6 0110 1 0

7 0111 0 1

8 1000 0 1

9 1001 1 0

DIGITAL LOGIC DESIGN Page no. 22

When the digit data is received . a parity checking circuit generates an error signal if the

total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check

can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd

parity is used more often than even parity does not detect the situation. Where all 0‘s are created

by a short ckt or some other fault condition.

Ex: Even parity scheme

(a) 10101010 (b) 11110110 (c)10111001

Ans:

(a) No. of 1‘s in the word is even is 4 so there is no error

(b) No. of 1‘s in the word is even is 6 so there is no error

(c) No. of 1‘s in the word is odd is 5 so there is error

Ex: odd parity

(a)10110111 (b) 10011010 (c)11101010

Ans:

(a) No. of 1‘s in the word is even is 6 so word has error

(b) No. of 1‘s in the word is even is 4 so word has error

(c) No. of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort of

2 dimensional parity. As each word is transmitted, it is added to the sum of the previously

transmitted words, and the sum retained at the transmitter end. At the end of transmission, the sum

called the check sum. Up to that time sent to the receiver. The receiver can check its sum with the

transmitted sum. If the two sums are the same, then no errors were detected at the receiver end. If

there is an error, the receiving location can ask for retransmission of the entire data, used in

teleprocessing systems.

Block parity:

Block of data shown is create the row & column parity bits for the data using odd parity.

The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each column

& row including the data bits & parity bit is odd as

DIGITAL LOGIC DESIGN Page no. 23

Error –Correcting Codes:

A code is said to be an error –correcting code, if the code word can always be deduced

from an erroneous word. For a code to be a single bit error correcting code, the minimum

distance of that code must be three. The minimum distance of that code is the smallest no. of bits

by which any two code words must differ. A code with minimum distance of 3 can‘t only correct

single bit errors but also detect (can‘t correct) two bit errors, The key to error correction is that

it must be possible to detect & locate erroneous that it must be possible to detect & locate

erroneous digits. If the location of an error has been determined. Then by complementing the

erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In

this , to each group of m information or message or data bits, K parity checking bits denoted by

P1,P2, --------- pk located at positions 2 k-1 from left are added to form an (m+k) bit code word.

To correct the error, k parity checks are performed on selected digits of each code word, & the

position of the error bit is located by forming an error word, & the error bit is then

complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 k-1th position

depending upon whether the check for parity involving the parity bit Pk is satisfied or not.Error

positions & their corresponding values :

Data Parity bit

10110 0

10001 1

10101 0

00010 0

11000 1

00000 1

11010 0

data

10110

10001

10101

00010

11000

00000

11010

DIGITAL LOGIC DESIGN Page no. 24

Error Position For 15 bit code

C4 C3 C2 C1

For 12 bit code

C4 C3 C2 C1

For 7 bit code

C3 C2 C1

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 1

2 0 0 1 0 0 0 1 0 0 1 0

3 0 0 1 1 0 0 1 1 0 1 1

4 0 1 0 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1 0 1 1 0

7 0 1 1 1 0 1 1 1 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 0 1 0 1 0 1 0

11 1 0 1 1 1 0 1 1

12 1 1 0 0 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

7- bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 20 21&22 from left are

added to make a 7 bit codeword which is then transmitted.

The word format

P1 P2 D3 P4 D5 D6 D7

D—Data bits P-

Parity bits

Decimal Digit For BCD

P1P2D3P4D5D6D7

For Excess-3

P1P2D3P4D5D6D7

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

1 1 1 0 1 0 0 1 1 0 0 1 1 0 0

2 0 1 0 1 0 1 1 0 1 0 0 1 0 1

3 1 0 0 0 0 1 1 1 1 0 0 1 1 0

4 1 0 0 1 1 0 0 0 0 0 1 1 1 1

5 0 1 0 0 1 0 1 1 1 1 0 0 0 0

6 1 1 0 0 1 1 0 0 0 1 1 0 0 1

7 0 0 0 1 1 1 1 1 0 1 1 0 1 0

8 1 1 1 0 0 0 0 0 1 1 0 0 1 1

9 0 0 1 1 0 0 1 0 1 1 1 1 0 0

DIGITAL LOGIC DESIGN Page no. 25

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code

The bit pattern is

P1P2D3P4D5D6D7

1 1 0 1

Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1

Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0

Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

The final code is 1010101

EX: Code word is 1001001

Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0

Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1

Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0

15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20 21 22 23

Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15

12- Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 20 21 22 23

Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to the decimal

digits. It is used for transmitting data between computers & its I/O device such as printers,

keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code &

EBCDIC code.

DIGITAL LOGIC DESIGN Page no. 26

Digital Logic Gates

Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to

implement a Boolean function with these type of gates.

DIGITAL LOGIC DESIGN Page no. 27

Properties of XOR Gates

• XOR (also) : the “not-equal” function

• XOR(X,Y) = X Y = X’Y + XY’
• Identities:

– X 0 = X

– X 1 = X’

– X X = 0

– X X’ = 1

• Properties:
– X Y = Y X

– (X Y) W = X (Y W)

Universal Logic Gates

NAND and NOR gates are called Universal gates. All fundamental gates (NOT, AND, OR) can be
realized by using either only NAND or only NOR gate. A universal gate provides flexibility and
offers enormous advantage to logic designers.

NAND as a Universal Gate

NAND Known as a “universal” gate because ANY digital circuit can be implemented with NAND
gates alone.
To prove the above, it suffices to show that AND, OR, and NOT can be implemented using
NAND gates only.

DIGITAL LOGIC DESIGN Page no. 28

Boolean Algebra: In 1854, George Boole developed an algebraic system now called Boolean algebra. In

1938, Claude E. Shannon introduced a two‐valued Boolean algebra called switching algebra that

represented the properties of bistable electrical switching circuits. For the formal definition of Boolean

algebra, we shall employ the postulates formulated by E. V. Huntington in 1904.

Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of elements

(0, 1), two binary operators called OR, AND, and one unary operator NOT. It is the basic mathematical

tool in the analysis and synthesis of switching circuits. It is a way to express logic functions algebraically.

Boolean algebra, like any other deductive mathematical system, may be defined with aset of elements, a

set of operators, and a number of unproved axioms or postulates. A set of elements is anycollection of

objects having a common property. If S is a set and x and y are certain objects, then x Î Sdenotes that x is

a member of the set S, and y ÏS denotes that y is not an element of S. A set with adenumerable number of

elements is specified by braces: A = {1,2,3,4}, i.e. the elements of set A are thenumbers 1, 2, 3, and 4. A

binary operator defined on a set S of elements is a rule that assigns to each pair ofelements from S a unique

element from S._ Example: In a*b=c, we say that * is a binary operator if it specifies a rule for finding c

from the pair (a,b)and also if a, b, c Î S.

Axioms and laws of Boolean algebra

Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept without proof and

upon which we can build a set of useful theorems.

 AND Operation OR Operation NOT Operation

Axiom1 : 0.0=0 0+0=0 0=1

Axiom2: 0.1=0 0+1=1 1=0

Axiom3: 1.0=0 1+0=1

Axiom4: 1.1=1 1+1=1

AND Law OR Law

Law1: A.0=0 (Null law) Law1: A+0=A
Law2: A.1=A (Identity law) Law2: A+1=1
Law3: A.A=A (Impotence law) Law3: A+A=A (Impotence law)

CLOSURE: The Boolean system is closed with respect to a binary operator if for every pair of

Boolean values,it produces a Boolean result. For example, logical AND is closed in the Boolean

system because it accepts only Boolean operands and produces only Boolean results.

_ A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary

operator specifies a rule for obtaining a unique element of S.

_ For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect to the binary

operator plus (+) by the rule of arithmetic addition, since for any a, b Î N we obtain a unique c Î N

by the operation a + b = c.

DIGITAL LOGIC DESIGN Page no. 29

ASSOCIATIVE LAW:

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) for all x, y, z Î S,

forall Boolean values x, y and z.

COMMUTATIVE LAW:

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all x, y, z є S

IDENTITY ELEMENT:

A set S is said to have an identity element with respect to a binary operation * on S if there exists an element

e є S with the property e * x = x * e = x for every x є S

BASIC IDENTITIES OF BOOLEAN ALGEBRA

• Postulate 1(Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more

elements and the two operators · and + which refer to logical AND and logical OR •x + 0 =x

• x · 0 = 0

• x + 1 = 1

• x · 1 = 1

• x + x = x

• x · x = x

• x + x’ = x

• x · x’ = 0

• x + y = y + x

• xy = yx

• x + (y + z) = (x + y) + z

• x (yz) = (xy) z

• x (y + z) = xy + xz

• x + yz = (x + y)(x + z)

• (x + y)’ = x’ y’

• (xy)’ = x’ + y’

DIGITAL LOGIC DESIGN Page no. 30

• (x’)’ = x

DeMorgan's Theorem

(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'
(b) (a.b … z)' = a' + b' + … z‘

Basic Theorems and Properties of Boolean algebra Commutative law

Law1: A+B=B+A Law2: A.B=B.A

Associative law

Law1: A + (B +C) = (A +B) +C Law2: A(B.C) = (A.B)C

Distributive law

Law1: A.(B + C) = AB+ AC Law2: A + BC = (A + B).(A +C)

Absorption law

Law1: A +AB =A Law2: A(A +B) = A

Solution: A(1+B)

Solution: A.A+A.B
 A A+A.B
 A(1+B)
 A

Consensus Theorem

Theorem1. AB+ A’C + BC = AB + A’C Theorem2. (A+B). (A’+C).(B+C) =(A+B).(A’+C)

The BC term is called the consensus term and is redundant. The consensus term is formed from a

PAIR OF TERMS in which a variable (A) and its complement (A’) are present; the consensus term

is formed by multiplying the two terms and leaving out the selected variable and its complement

Consensus Theorem1 Proof:

AB+A’C+BC=AB+A’C+(A+A’)BC

=AB+A’C+ABC+A’BC

DIGITAL LOGIC DESIGN Page no. 31

=AB(1+C)+A’C(1+B)

= AB+ A’C

Principle of Duality

Each postulate consists of two expressions statement one expression is transformed into the
other by interchanging the operations (+) and (⋅) as well as the identity elements 0 and 1.

Such expressions are known as duals of each other.
If some equivalence is proved, then its dual is also immediately true.

If we prove: (x.x)+(x’+x’)=1, then we have by duality: (x+x)⋅(x’.x’)=0

The Huntington postulates were listed in pairs and designated by part (a) and part (b) in below
table.

Table for Postulates and Theorems of Boolean algebra
Part-A Part-B

A+0=A A.0=0

A+1=1 A.1=A
A+A=A (Impotence law) A.A=A (Impotence law)

A+ A̅=1 A. A̅=0

A̅=A (double inversion law) --

Commutative law: A+B=B+A A.B=B.A

Associative law: A + (B +C) = (A +B) +C A(B.C) = (A.B)C
Distributive law: A.(B + C) = AB+ AC A + BC = (A + B).(A +C)

Absorption law: A +AB =A A(A +B) = A

DeMorgan Theorem:
(A+B) = A̅ . B̅ (A.B) = = A̅ + B̅

Redundant Literal Rule: A+ A̅. B=A+B A.(A̅A+B)=AB

Consensus Theorem: AB+ A’C + BC = AB + A’C (A+B). (A’+C).(B+C) =(A+B).(A’+C)

Boolean Function
Boolean algebra is an algebra that deals with binary variables and logic operations.
A Boolean function described by an algebraic expression consists of binary variables, the

constants 0 and 1, and the logic operation symbols.
For a given value of the binary variables, the function can be equal to either 1 or 0.

F(vars) = expression

Set of binary Variables Operators (+, •, ‘)

Constants (0, 1)
Groupings (parenthesis)
Variables

Consider an example for the Boolean function

F1 = x + y’z

DIGITAL LOGIC DESIGN Page no. 32

The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equal to 0
otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F1 = 1 if x = 1
or if y = 0 and z = 1.
A Boolean function expresses the logical relationship between binary variables and is evaluated
by determining the binary value of the expression for all possible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2n, where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from 0 through 2n - 1.

Truth Table for F1

Gate Implementation of F1 = x + y’z

Note:
Q: Let a function F() depend on n variables. How many rows are there in the truth table of F() ?
A: 2n rows, since there are 2n possible binary patterns/combinations for the n variables.

Truth Tables

 Enumerates all possible combinations of variable values and the corresponding function
value

 Truth tables for some arbitrary functions
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the below.

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

x y z F1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

DIGITAL LOGIC DESIGN Page no. 33

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

 Truth table: a unique representation of a Boolean function

 If two functions have identical truth tables, the functions are equivalent(and vice-
versa).

 Truth tables can be used to prove equality theorems.
 However, the size of a truth table grows exponentially with the number ofvariables

involved, hence unwieldy. This motivates the use of Boolean Algebra.

Boolean expressions-NOT unique
Unlike truth tables, expressions epresenting
a Boolean function are NOT unique.

• Example:
– F(x,y,z) = x’•y’•z’ + x’•y•z’ +

x•y•z’
– G(x,y,z) = x’•y’•z’ + y•z’

• The corresponding truth tables for
F() and G() are to the right. They are
identical.

• Thus, F() = G()

Algebraic Manipulation (Minimization of Boolean function)

• Boolean algebra is a useful tool for simplifying digital circuits.
• Why do it? Simpler can mean cheaper, smaller, faster.
• Example: Simplify F = x’yz + x’yz’ + xz.

F= x’yz + x’yz’ + xz
= x’y(z+z’) + xz
= x’y•1 + xz

x y z F G

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0

DIGITAL LOGIC DESIGN Page no. 34

= x’y + xz

• Example: Prove

x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’
• Proof:

x’y’z’+ x’yz’+ xyz’
= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

Complement of a Function

 The complement of a function is derived by interchanging (• and +), and (1 and 0), and

complementing each variable.

 Otherwise, interchange 1s to 0s in the truth table column showing F.

 The complement of a function IS NOT THE SAME as the dual of afunction.
Example

• Find G(x,y,z), the complement of F(x,y,z) = xy’z’ +x’yz
Ans: G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan
= (x’+y+z) • (x+y’+z’) DeMorgan again

Note: The complement of a function can also be derived by finding the function’s dual, and
then complementing all of the literals

Canonical and Standard Forms

We need to consider formal techniques for the simplification of Boolean functions.

Identical functions will have exactly the same canonical form.

 Minterms and Maxterms

 Sum-of-Minterms and Product-of- Maxterms

 Product and Sum terms

 Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

Literal: A variable or its complement

Product term: literals connected by •

Sum term: literals connected by +

Minterm: a product term in which all the variables appear exactly once, either complemented or

uncomplemented.

DIGITAL LOGIC DESIGN Page no. 35

Maxterm: a sum term in which all the variables appear exactly once, either complemented or

uncomplemented.

Canonical form: Boolean functions expressed as a sum of Minterms or product of Maxterms are said to be
in canonical form.

Minterm
 Represents exactly one combination in the truth table.

 Denoted by mj, where j is the decimal equivalent of the minterm’s corresponding binary

combination (bj).

 A variable in mj is complemented if its value in bj is 0, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding minterm is denoted

by mj = A’BC

Maxterm

 Represents exactly one combination in the truth table.

 Denoted by Mj, where j is the decimal equivalent of the maxterm’s corresponding binary
combination (bj).

 A variable in Mj is complemented if its value in bj is 1, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding maxterm is denoted
by Mj = A+B’+C’

Truth Table notation for Minterms and Maxterms

• Minterms and Maxterms are easy to denote using a truthtable.

Example: Assume 3 variables x,y,z (order is fixed)

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

Canonical Forms

DIGITAL LOGIC DESIGN Page no. 36

• Every function F() has two canonical forms:

– Canonical Sum-Of-Products (sum of minterms)

– Canonical Product-Of-Sums (product of maxterms)

Canonical Sum-Of-Products:

The minterms included are those mj such that F() = 1 in row j of the truth table for F().

Canonical Product-Of-Sums:

The maxterms included are those Mj such that F() = 0 in row j of the truth table for F().

Example

Consider a Truth table for f1(a,b,c) at right

The canonical sum-of-products form for f1 is

f1(a,b,c) = m1 + m2 + m4 + m6

= a’b’c + a’bc’ + ab’c’ + abc’

The canonical product-of-sums form for f1 is

f1(a,b,c) = M0 • M3 • M5 • M7

= (a+b+c)•(a+b’+c’)• (a’+b+c’)•(a’+b’+c’).

• Observe that: mj =Mj’

a b c f1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

DIGITAL LOGIC DESIGN Page no. 37

Shorthand: ∑ and ∏

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and m(1,2,4,6)

indicates that the minterms to be included are m1, m2, m4, and m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form, and M(0,3,5,7)

indicates that the maxterms to be included are M0, M3, M5, and M7.

• Since mj = Mj’ for any j,

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c)

•

Conversion between Canonical Forms

• Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in the original form with those

that do not.

• Example:

f1(a,b,c)= a’b’c + a’bc’ + ab’c’ + abc’

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)

Standard Forms

Another way to express Boolean functions is in standard form. In this configuration, the terms that form

the function may contain one, two, or any number of literals.

There are two types of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms, with one or more

literals each. The sum denotes the ORing of these terms. An example of a function expressed as a sum of

products is

F1 = y’ + xy + x’yz’

The expression has three product terms, with one, two, and three literals. Their sum is, in effect, an OR

operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any

number of literals. The product denotes the ANDing of these terms. An example of a function expressed as

a product of sums is

F2 = x(y’ + z)(x’ + y + z’)

This expression has three sum terms, with one, two, and three literals. The product is an AND operation.

DIGITAL LOGIC DESIGN Page no. 38

Conversion of SOP from standard to canonical form

Example-1.

Express the Boolean function F = A + B’C as a sum of minterms.

Solution: The function has three variables: A, B, and C. The first term A is missing two variables; therefore,

A = A(B + B’) = AB + AB’

This function is still missing one variable, so

A = AB(C + C’) + AB’ (C + C’)

= ABC + ABC’ + AB’C + AB’C’

The second term B’C is missing one variable; hence,

B’C = B’C(A + A’) = AB’C + A’B’C

Combining all terms, we have

F = A + B’C

= ABC + ABC’ + AB’C + AB’C’+ A’B’C

But AB’C appears twice, and according to theorem (x + x = x), it is possible to remove one of those

occurrences. Rearranging the minterms in ascending order, we finally obtain

F = A’B’C + AB’C + AB’C + ABC’ + ABC

= m1 + m4 + m5 + m6 + m7

When a Boolean function is in its sum‐of‐minterms form, it is sometimes convenient to express the

function in the following brief notation:

F(A, B, C) = ∑m (1, 4, 5, 6, 7)

Example-2.

Express the Boolean function F = xy + x’z as a product of maxterms.

Solution: First, convert the function into OR terms by using the distributive law:

F = xy + x’z = (xy + x’)(xy + z)

= (x + x’)(y + x’)(x + z)(y + z)

= (x’+ y)(x + z)(y + z)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,

x’+ y = x’ + y + zz’ = (x’ + y + z)(x’ + y + z’)

x + z = x + z + yy’ = (x + y + z)(x + y’ + z)

y + z = y + z + xx’ = (x + y + z)(x’ + y + z)

Combining all the terms and removing those which appear more than once, we finally obtain

F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z)

F= M0M2M4M5

A convenient way to express this function is as

follows: F(x, y, z) = πM(0, 2, 4, 5)

The product symbol, π, denotes the ANDing of maxterms; the numbers are the indices of the maxterms of

the function.

DIGITAL LOGIC DESIGN Page no. 39

Minimization Techniques

Two-variable k-map:

A two-variable k-map can have 22=4 possible combinations of the input variables A and

B. Each of these combinations, , B,A ,AB(in the SOP form) is called a minterm. The

minterm may be represented in terms of their decimal designations – m0 for , m1 for B,m2 for

A and m3 for AB, assuming that A represents the MSB. The letter m stands for minterm and the

subscript represents the decimal designation of the minterm. The presence or absence of a minterm

in the expression indicates that the output of the logic circuit assumes logic 1 or logic 0 level for

that combination of input variables.

The expression f= ,+ B+A +AB , it can be expressed using min

term as F= m0+m2+m3=∑m(0,2,3)

Using Truth Table:

Minterm Inputs
A B

Output
F

0 0 0 1

1 0 1 0

2 1 0 1

3 1 1 1

A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that

the particular mintermdoes not appear in the expression for output . this information can also be

indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k-

map represents a unique minterm. The minterm designation of the squares are placed in any square,

indicates that the corresponding minterm does output expressions. And a 0 or no entry in any

square indicates that the corresponding minterm does not appear in the expression for output.

The minterms of a two-variable k-map

DIGITAL LOGIC DESIGN Page no. 40

The mapping of the expressions =∑m(0,2,3)is

k-map of ∑m(0,2,3)

EX: Map the expressions f= B+A

F= m1+m2=∑m(1,2)The k-map is

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for

adjacent adjacent squares having 1‘s minterms adjacent to each other, and combine them to form

larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if

their minterms differ in only one variable. (i.e, B & A differ only in one variable. so theymay be

combined to form a 2-square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal designations must

differ by a power of 2. A minterm can be combined with any number of minterms adjacent to it

to form larger squares. Two minterms which are adjacent to each other can be combined to form

a bigger square called a 2-square or a pair. This eliminates one variable – the variable that is not

common to both the minterms. For EX:

m0 and m1 can be combined to yield,

f1 = m0+m1= + B= (B+

)= m0 and m2 can be combined to yield,

f2 = m0+m2= + = (+)=

m1 and m3 can be combined to yield,

DIGITAL LOGIC DESIGN Page no. 41

f3= m1+m3= B+AB=B(+)=B

m2 and m3 can be combined to yield,

f4 = m2+m3=A +AB=A(B+)=A

m0 ,m1 ,m2 and m3 can be combined to yield,

= + +A +AB

= (B+) +A(B+)

= +A

=1

f1= f2= f3=B f4=A f5=1

The possible minterm groupings in a two-variable k-map.

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square

eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after

minimization, consider only those variables which remain constant through the square, and ignore

the variables which are varying. Write the non complemented variable if the variable is remaining

constant as a 1, and the complemented variable if the variable is remaining constant as a 0, and

write the variables as a product term. In the above figure f1 read as , because, along the square , A

remains constant as a 0, that is , as , where as B is changing from 0 to 1.

EX: Reduce the minterm f= +A +AB using mapping Expressed in terms of minterms, the given

expression is F=m0+m1+m2+ m3=m∑(0,1,3)& the figure shows the k-map for f and its reduction .

In one 2-square, A is constant as a 0 but B varies from a 0 to a 1, and in the other 2- square, B is

constant as a 1 but A varies from a 0 to a 1. So, the reduced expressions is +B.

It requires two gate inputs for realization as

f= +B (k-map in SOP form, and logic diagram.)

DIGITAL LOGIC DESIGN Page no. 42

The main criterion in the design of a digital circuit is that its cost should be as low as

possible. For that the expression used to realize that circuit must be minimal.Since the cost is

proportional to number of gate inputs in the circuit in the circuit, an expression is considered

minimal only if it corresponds to the least possible number of gate inputs. & there is no guarantee

for that k-map in SOP is the real minimal. To obtain real minimal expression, obtain the minimal

expression both in SOP & POS form form by using k-maps and take the minimal of these two

minimals.

The 1‘s on the k-map indicate the presence of minterms in the output expressions, where

as the 0s indicate the absence of minterms .Since the absence of a minterm in the SOP expression

means the presense of the corresponding maxterm in the POS expression of the same .when a SOP

expression is plotted on the k-map, 0s or no entries on the k-map represent the maxterms. To obtain

the minimal expression in the POS form, consider the 0s on the k-map and follow the procedure

used for combining 1s. Also, since the absence of a maxterm in the POS expression means the

presence of the corresponding minterm in the SOP expression of the same , when a POS expression

is plotted on the k-map, 1s or no entries on the k-map represent theminterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A function in two

variables (A, B) has four possible maxterms, A+B,A+ , +B, +

. They are represented as M0, M1, M2, and M3respectively. The uppercase letter M stands for

maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating

the non-complemented variable as a 0 and the complemented variable as a 1 and putting them side

by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, 0s are placed in the squares corresponding

to the maxterms which are presented in the expression an d1s are placed in the squares

corresponding to the maxterm which are not present in the expression. The decimal designation of

the squares of the squares for maxterms is the same as that for the minterms. A two-variable k-

map & the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

DIGITAL LOGIC DESIGN Page no. 43

Minimization of POS Expressions:

To obtain the minimal expression in POS form, map the given POS expression on to the

K-map and combine the adjacent 0s into as large squares as possible. Read the squares putting

the complemented variable if its value remains constant as a 1 and the non-complemented variable

if its value remains constant as a 0 along the entire square (ignoring the variables which do not

remain constant throughout the square) and then write them as a sum term.

Various maxterm combinations and the corresponding reduced expressions are shown in
figure. In this f1 read as A because A remains constant as a 0 throughout the square and B changes
from a 0 to a 1. f2 is read as B‘ because B remains constant along the square as a 1 and A changes
from a 0 to a 1. f5

Is read as a 0 because both the variables are changing along the square.

Ex: Reduce the expression f=(A+B)(A+B‘)(A‘+B‘) using mapping.

The given expression in terms of maxterms is f=πM(0,1,3). It requires two gates inputs for

realization of the reduced expression as

F=AB‘
K-map in POS form and logic diagram

In this given expression ,the maxterm M2 is absent. This is indicated by a 1 on the k-map. The
corresponding SOP expression is ∑m2 or AB‘. This realization is the same as that for the POS
form.

Three-variable K-map:

A function in three variables (A, B, C) expressed in the standard SOP form can have eight

possible combinations: A B C , AB C,A BC ,A BC,AB C ,AB C,ABC , and ABC. Each one of these

combinations designate d by m0,m1,m2,m3,m4,m5,m6, and m7, respectively, is called a minterm.

A is the MSB of the minterm designator and C is the LSB.

In the standard POS form, the eight possible combinations are:A+B+C, A+B+C , A+B
+C,A+B + C ,A + B+ C,A + B + C ,A + B + C,A + B + C . Each oneof these combinations

designated by M0, M1, M2, M3, M4, M5, M6, and M7respectively is called a maxterm. A is the
MSB of the maxterm designator and C is the LSB.

A three-variable k-map has, therefore, 8(=23) squares or cells, and each square on the map
represents a minterm or maxterm as shown in figure. The small number on the top right corner of

each cell indicates the minterm or maxterm designation.

DIGITAL LOGIC DESIGN Page no. 44

The three-variable k-map.

The binary numbers along the top of the map indicate the condition of B and C for each

column. The binary number along the left side of the map against each row indicates the condition

of A for that row. For example, the binary number 01 on top of the second column in fig indicates

that the variable B appears in complemented form and the variable C in non- complemented form

in all the minterms in that column. The binary number 0 on the left of the first row indicates that

the variable A appears in complemented form in all the minterms in that row, the binary numbers

along the top of the k-map are not in normal binary order. They are, infact, in the Gray code. This

is to ensure that twophysically adjacent squares are really adjacent, i.e., their minterms or

maxterms differ by only one variable.

Ex: Map the expression f=: C+ + + +ABC

In the given expression , the minterms are : C=001=m1 ; =101=m5;

=010=m2;

=110=m6;ABC=111=m7.

So the expression is f=∑m(1,5,2,6,7)= ∑m(1,2,5,6,7). The corresponding k-map is

K-map in SOP form

Ex: Map the expression f= (A+B+C),(+ +) (+ +)(A + +)(+ +)

In the given expression the maxterms are

:A+B+C=000=M0; + + =101=M5; + + = 111=M7; A + + =011=M3; + +
=110=M6.

So the expression is f = π M (0,5,7,3,6)= π M (0,3,5,6,7). The mapping of the expression is

DIGITAL LOGIC DESIGN Page no. 45

K-map in POS form.

Minimization of SOP and POS expressions:

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look

at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the minterms

(maxterms) adjacent to each other, in order to combine them into larger squares. Combining of

adjacent squares in a k-map containing 1s (or 0s) for the purpose of simplification of a SOP (or

POS)expression is called looping. Some of the minterms (maxterms) may have many adjacencies.

Always start with the minterms (maxterm) with the least number of adjacencies and try to form as

large as large a square as possible. The larger must form a geometric square or rectangle. They can

be formed even by wrapping around, but cannot be formed by using diagonal configurations. Next

consider the minterm (maxterm) with next to the least number of adjacencies and form as large a

square as possible. Continue this till all the minterms (maxterms) are taken care of . A minterm

(maxterm) can be part of any number of squares if it is helpful in reduction. Read the minimal

expression from the k-map, corresponding to the squares formed. There can be more than one

minimal expression.

Two squares are said to be adjacent to each other (since the binary designations along

the top of the map and those along the left side of the map are in Gray code), if they are

physically adjacent to each other, or can be made adjacent to each other by wrapping around.

For squares to be combinable into bigger squares it is essential but not sufficient that their

minterm designations must differ by a power of two.

General procedure to simplify the Boolean expressions:

1. Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms) of the SOP

(POS) expression.

2. Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are isolated

minterms(maxterms) . They are to be read as they are because they cannot be combined

even into a 2-square.

3. Check for those 1s(0S) which are adjacent to only one other 1(0) and make them pairs (2

squares).

4. Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even if they contain

some 1s(0s) which have already been combined. They must geometrically form a square

or a rectangle.

5. Check for any 1s(0s) that have not been combined yet and combine them into bigger

squares if possible.

6. Form the minimal expression by summing (multiplying) the product the product (sum)

terms of all the groups.

Reading the K-maps:

DIGITAL LOGIC DESIGN Page no. 46

While reading the reduced k-map in SOP (POS) form, the variable which remains constant

as 0 along the square is written as the complemented (non-complemented) variable and the one

which remains constant as 1 along the square is written as non-complemented (complemented)

variable and the term as a product (sum) term. All the product (sum) terms are added (multiplied).

Some possible combinations of minterms and the corresponding minimal expressions

readfrom the k-maps are shown in fig: Here f6 is read as 1, because along the 8-square no variable

remains constant. F5 is read as , because, along the 4-square formed by0,m1,m2 and m3 , the
variables B and C are changing, and A remains constant as a 0. Algebraically,

f5= m0+m1+m2+m3

= + C+ +

= (+C)+ B(C+)

= + B

= (+B)=

f3 is read as + , because in the 4-square formed by m0,m2,m6, and m4, the variable A and B are

changing , where as the variable C remains constant as a 0. So it is read as . In the 4-square formed

by m0, m1, m4, m5, A and C are changing but B remains constant as a 0. So it is read as

. So, the resultant expression for f3 is the sum of these two, i.e., + .

f1 is read as + + ,because in the 2-square formed by m0 and m4 , A is changing from a0

to a 1. Whereas B and C remain constant as a 0. So it s read as . In the 2-square formed by

m0 and m1, C is changing from a 0 to a 1, whereas A and B remain constant as a 0. So it is read as

.In the 2-square formed by m0 and m2 , B is changing from a 0 to a 1 whereas A and C remain

constant as a 0. So, it is read as . Therefore, the resultant SOP expression is

+ +

Some possible maxterm groupings and the corresponding minimal POS expressions read from

the k-map are

DIGITAL LOGIC DESIGN Page no. 47

In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing from a 0 to

a 1, where as C remains constant as a 1. SO it is read as . Along the 4-squad formed by M3, M2,

M7, and M6, variables A and C are changing from a 0 to a 1. But B remains constant as a 1. So it

is read as . The minimal expression is the product of these two terms , i.e., f1 = ()().also in this

figure, along the 2-square formed by M4 and M6 , variable B is changing from a 0 to a 1, while

variable A remains constant as a 1 and variable C remains constant as a 0. SO, read it as

+C. Similarly, the 2-square formed by M7 andM6 is read as + , while the 2-square formed

by M2 and M6 is read as +C. The minimal expression is the product of these sum terms, i.e, f2

=(+)+(+)+(+C)

Ex:Reduce the expression f=∑m(0,2,3,4,5,6) using mapping and implement it in AOI logic as well

as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal

expression using AOI logic and the corresponding NAND logic are shown in figures below

In SOP k-map, the reduction is done as:

1. m5 has only one adjacency m4 , so combine m5 and m4 into a square. Along this 2-square A

remains constant as 1 and B remains constant as 0 but C varies from 0 to 1. So read it as

A .

2. m3 has only one adjacency m2 , so combine m3 and m2 into a square. Along this 2-square A

remains constant as 0 and B remains constant as 1 but C varies from 1 to 0. So read it as

B.

3. m6 can form a 2-square with m2 and m4 can form a 2-square with m0, but observe that by

wrapping the map from left to right m0, m4 ,m2 ,m6 can form a 4-square. Out of these m2

andm4 have already been combined but they can be utilized again. So make it. Along this 4-

square, A is changing from 0 to 1 and B is also changing from 0 to 1 but C is remaining

constant as 0. so read it as .

4. Write all the product terms in SOP form. So the minimal SOP expression is

fmin=

k-map AOI logic NAND logic

DIGITAL LOGIC DESIGN Page no. 48

Four variable k-maps:

Four variable k-map expressions can have 24=16 possible combinations of input variables such

as , ,------------ABCD with minterm designations m0,m1 -------------------- m15 respectively
in SOP form & A+B+C+D, A+B+C+ ,---------- + + + with maxterms M0,M1, ---------

-

-M15 respectively in POS form. It has 24=16 squares or cells.The binary number designations of

rows & columns are in the gray code. Here follows 01 & 10 follows 11 called Adjacency ordering.

SOP form POS form

EX:

DIGITAL LOGIC DESIGN Page no. 49

Five variable k-map:

Five variable k-map can have 25 =32 possible combinations of input variable as

, E,--------ABCDE with minterms m0, m1-----m31 respectively in SOP &

A+B+C+D+E, A+B+C+ ,---------- + + + + with maxterms M0,M1, -----------

M31 respectively in POS form. It has 25=32 squares or cells of the k-map are divided into 2 blocks
of

16 squares each.The left block represents minterms from m0 to m15 in which A is a 0, and the right

block represents minterms from m16 to m31 in which A is 1.The 5-variable k-map may contain 2-

squares, 4-squares , 8-squares , 16-squares or 32-squares involving these two blocks. Squares are

also considered adjacent in these two blocks, if when superimposing one block on top of another,

the squares coincide with one another.

Grouping s is

DIGITAL LOGIC DESIGN Page no. 50

Ex: F=∑m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP

POS is F=πM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)

The real minimal expression is the minimal of the SOP and POS forms.

The reduction is done as

1. There is no isolated 1s

2. M12 can go only with m13. Form a 2-square which is read asA‘BCD‘

3. M0 can go with m2,m16 and m18 . so form a 4-square which is read as B‘C‘E‘

4. M20,m21,m17 and m16 form a 4-square which is read as AB‘D‘
5. M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d

6. Write all the product terms in SOP form.

So the minimal expression is

Fmin= A‘BCD‘+B‘C‘E‘+AB‘D‘+C‘D(16 inputs)

In the POS k-map ,the reduction is done as:

1. There are no isolated 0s

3.

4.M8

5. M28

6.M30

7. Sum terms in POS form. So the minimal expression in POS is

Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D

DIGITAL LOGIC DESIGN Page no. 51

Six variable k-map:

Six variable k-map can have 26 =64 combinations as , ,---------

---ABCDEF with minterms m0, m1-----m63 respectively in SOP & (A+B+C+D+E+F), ---------- (

+ + + + +) with maxterms M0,M1, -----------M63 respectively in POS form. It has

26=64 squares or cells of the k-map are divided into 4 blocks of 16 squares each.

Some possible groupings in a six variable k-map

Don’t care combinations:For certain input combinations, the value of the output is unspecified

either because the input combinations are invalid or because the precise value of the output is of

no consequence. The combinations for which the value of experiments are not specified are called

don‘t care combinations are invalid or because the precise value of the output is of no consequence.

The combinations for which the value of expressions is not specified are called don‘t care

combinations or Optional Combinations, such expressions stand incompletely specified. The

output is a don‘t care for these invalid combinations.

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are unspecified. &

never occur called don‘t cares.

A standard SOP expression with don‘t cares can be converted into a standard POS

form by keeping the don‘t cares as they are & writing the missing minterms of the SOP form as

the maxterms of the POS form viceversa.

Don‘t cares denoted by ‗X‘ or ‗φ‘

DIGITAL LOGIC DESIGN Page no. 52

Ex:f=∑m(1,5,6,12,13,14)+d(2,4)

Or f=π M(0,3,7,9,10,11,15).πd(2,4)

SOP minimal form fmin= +B +

POS minimal form fmin=(B+D)(+B)(+D)

= + + + + (+

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of

these subcubes is called a Prime implicant (PI). The PI which contains at leastone which cannot be

covered by any other prime implicants is called as Essential Prime implicant (EPI).The PI whose

each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A PI which is

neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is

F(A,B,C,D)= CD+ABC+A D + B

The RPI ‗BD‘ may be included without changing the function but the resulting expression would

not be in minimal SOP(MSP) form.

Essential and Redundant Prime Implicants

DIGITAL LOGIC DESIGN Page no. 53

F(A,B,C,D)=∑m(0,4,5,10,11,13,15) SPI are marked by dotted squares, shows

MSP form of a function need not be unique.

Essential and Selective Prime Implicants

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s to cover

remaining uncovered minterms 5,13,15. & these can be covered as

(A) (4,5) &(13,15) ---------- B +ABD

(B) (5,13) & (13,15) -------- B D+ABD

(C) (5,13) & (15,11) ------- B D+ACD

F(A,B,C,D)= +A C -------- EPI‘s + B +ABD

(OR) F(A,B,C,D)= +A C -------- EPI‘s + B D+ABD

(OR) F(A,B,C,D)= +A C -------- EPI‘s + B D+ACD

False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s:

The maxterms are called falseminterms. The PI‘s is obtained by using the maxterms are

called False PI‘s (FPI). The FPI which contains at least one ‗0‘ which can‘t be covered by only

other FPI is called an Essential False Prime implicant (ESPI)

F(A,B,C,D)= ∑m(0,1,2,3,4,8,12)

=π M(5,6,7,9,10,11,13,14,15)

Fmin= (+)(+)(+)(+)

All the FPI, EFPI‘s as each of them contain atleast one ‗0‘ which can‘t be covered by any other

FPI

DIGITAL LOGIC DESIGN Page no. 54

Essential False Prime implicants

Consider Function F(A,B,C,D)= π M(0,1,2,6,8,10,11,12)

Essential and Redundant False Prime Implicants

Mapping when the function is not expressed in minterms (maxterms):

An expression in k-map must be available as a sum (product) of minterms (maxterms). However

if not so expressed, it is not necessary to expand the expression algebraically into its minterms

(maxterms). Instead, expansion into minterms (maxterms) can be accomplished in the process of

entering the terms of the expression on the k-map.

Limitations of Karnaugh maps:

 Convenient as long as the number of variables does not exceed six.

 Manual technique, simplification process is heavily dependent on the humanabilities.

Quine-Mccluskey Method:

It also known as Tabular method. It is more systematic method of minimizing expressions

of even larger number of variables. It is suitable for hand computation as well as computation by

machines i.e., programmable. . The procedure is based on repeated application of the combining

theorem.

PA+P =P (P is set of literals) on all adjacent pairs of terms, yields the set of all PI‘s from which

a minimal sum may be selected.

Consider expression

∑m(0,1,4,5)= + C+A +A C

DIGITAL LOGIC DESIGN Page no. 55

First, second terms & third, fourth terms can be combined

(+)+ (C+)= +A

Reduced to

(+)=

The same result can be obtained by combining m0& m4 & m1&m5 in first step & resulting terms

in the second step .

Procedure:

 Decimal Representation

 Don‘t cares

 PI chart

 EPI

 Dominating Rows & Columns

 Determination of Minimal expressions in complescases.

Branching Method:

DIGITAL LOGIC DESIGN Page no. 56

DIGITAL LOGIC DESIGN Page no. 57

EX:

DIGITAL LOGIC DESIGN Page no. 58

DIGITAL LOGIC DESIGN Page no. 59

DIGITAL LOGIC DESIGN Page no. 60

CHAPTER-2: COMBINATIONAL CIRCUITS

Combinational Logic

• Logic circuits for digital systems may be combinational or sequential.

• A combinational circuit consists of input variables, logic gates, and output variables.

For n input variables,there are 2n possible combinations of binary input variables .For each

possible input Combination ,there is one and only one possible output combination.A

combinational circuit can be described by m Boolean functions one for each output

variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1. The problem is stated

2. The number of available input variables and required output variables is
determined. 3.The input and output variables are assignedlettersymbols.
4.The truth table that defines the required relationship between inputs and outputs is derived.

5.The simplified Boolean function for each output is obtained.

DIGITAL LOGIC DESIGN Page no. 61

Adders:

Digital computers perform variety of information processing tasks,the one is arithmetic

operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic

possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and addend

bits are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is

called a carry.A combinational circuit that performs the addition of two bits is called a half- adder.

One that performs the addition of 3 bits (two significant bits & previous carry) is called a full

adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and

addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and

produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single

bit words.

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the

X-OR of A and B (It represents the LSB of the sum). Therefore,

S=A𝐵+𝐴

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore,

C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

Logic diagrams of half-adder

DIGITAL LOGIC DESIGN Page no. 62

NAND LOGIC:

NOR Logic:

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum

bit and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be

added by using a half-adder. The carry resulted from the addition of the LSBs is carried over to the

next significant column and added to the two bits in that column. So, in the second and

higher columns, the two data bits of that column and the carry bit generated from the addition in

the previous column need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the

carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S

gives the value of the least significant bit of the sum. The variable Cout gives the output carry.The

eight rows under the input variables designate all possible combinations of 1s and 0s that these

variables may have. The 1s and 0s for the output variables are determined from the arithmetic sum

of the input bits. When all the bits are 0s , the output is 0. The S output is equal to 1 when only 1

input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or three

inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in response to every

possible combination of A,B and Cin is described by

S ABCin ABCin ABCin ABCin

Cout ABCin ABCin ABCin ABCin

and

S A B Cin

Cout ACin BCin AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo

sum of the data bits in that column and the carry from the previous column. The logic diagram of

the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR gate

is

DIGITAL LOGIC DESIGN Page no. 63

DIGITAL LOGIC DESIGN Page no. 64

Even though a full-adder can be constructed using two half-adders, the disadvantage is that the bits

must propagate through several gates in accession, which makes the total propagation delay greater

than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or

only NOR gates as

NAND Logic:

DIGITAL LOGIC DESIGN Page no. 65

NOR Logic:

Subtractors:

The subtraction of two binary numbers may be accomplished by taking the complement of

the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an addition

operation and instead of having a separate circuit for subtraction, the adder itself can be used to

perform subtraction. This results in reduction of hardware. In subtraction, each subtrahend bit of

the number is subtracted from its corresponding significant minuend bit to form a difference bit. If

the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the next significant

position., that has been borrowed must be conveyed to the next higher pair of bits by means of a

signal coming out (output) of a given stage and going into (input) the next higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from the other and

produces the difference. It also has an output to specify if a 1 has been borrowed. . It is used to

subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is

subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two outputs

d and b. d indicates the difference and b is the output signal generated that informs the next stage

that a 1 has been borrowed. When a bit B is subtracted from another bit A, a difference bit (d)

and a borrow bit (b) result according to the rules given as

DIGITAL LOGIC DESIGN Page no. 66

The output borrow b is a 0 as long as A≥B. It is a 1 for A=0 and B=1. The d output is the result

of the arithmetic operation2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every possible

combination of the two 1-bit numbers is , therefore ,

d=A𝐵+𝐴 and b=𝐴 B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained

by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly

the same as the logic for output S in the half-adder.

A half-substractor can also be realized using universal logic either using only NAND gates or

using NOR gates as:

NAND Logic:

NOR Logic:

DIGITAL LOGIC DESIGN Page no. 67

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during

the subtraction of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit

is subtracted from the minuend bit, considering the borrow from that column used for the

subtraction in the preceding column. Such a subtraction is performed by a full-subtractor. It

subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column for

the subtraction in the preceding column, and outputs the difference bit (d) and the borrow bit(b)

required from the next d and b. The two outputs present the difference and output borrow. The 1s

and 0s for the output variables are determined from the subtraction of A-B-bi.

From the truth table, a circuit that will produce the correct difference and borrow bits in response

to every possiblecombinations of A,B and bi is

A full-subtractor can be realized using X-OR gates and AOI gates as

33

The full subtractor can also be realized using universal logic either using only NAND gates or

using NOR gates as:

NAND Logic:

NOR Logic:

Comparator

1- bit Magnitude Comparator:

51

4- Bit MagnitudeComparator:

IC Comparator:

ENCODERS:

Octal to Binary

Encoder:

Decimal to BCD Encoder:

CHAPTER-3:SEQUENTIAL CIRCUITS

The Basic Latch

⦿ Basic latchis a feedback connection of two NOR gates or two NAND gates

⦿ It can store one bit of information

It can be set to 1 using the S input and reset to 0 using the R input

The Gated Latch

⦿ Gated latch is a basic latch that includes input gating and a control signal

⦿ The latch retains its existing state when the control input is equal to0

⦿ Its state may be changed when the control signal is equal to 1. In our discussion we referred to

the control input as the clock

⦿ We consider two types of gated latches:

◾ Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,

respectively.

◾ Gated D latch uses the D input to force the latch into a state that has the samelogic

value as the D input.

Gated S/R Latch

Gated D Latch

Setup and Hold Times

⦿ Setup Time tsu

The minimum time that the input signal must be stable prior to the edge of the clock signal.

⦿ Hold Time th

The minimum time that the input signal must be stable after the edge of the clock signal.

Flip-Flops

⦿ A flip-flop is a storage element based on the gated latch principle

⦿ It can have its output state changed only on the edge of the controlling clocksignal

⦿ We consider two types:

⦿ Edge-triggered flip-flop is affected only by the input values present when theactive

edge of the clock occurs

⦿ Master-slave flip-flop is built with two gatedlatches

⦿ The master stage is active during half of the clock cycle, and the slave stage is active

during the other half.

⦿ The output value of the flip-flop changes on the edge of the clock that activates the

transfer into the slave stage.

Master-Slave D Flip-Flop

A Positive-Edge-Triggered D Flip-Flop

Master-Slave D Flip-Flop with Clear and Preset

T Flip-Flop

Excitation Tables

Conversions of flip-flops

Sequential Circuit Design

• Steps in the design process for sequential circuits

• State Diagrams and State Tables Examples

• Steps in Design of a Sequential Circuit

o 1. Specification – A description of the sequential circuit. Should include a detailing of

the inputs, the outputs, and the operation. Possibly assumes that you have knowledge of

digital system basics.

o 2. Formulation: Generate a state diagram and/or a state table from the statement of the
problem.

o 3. State Assignment: From a state table assign binary codes to thestates.
o 4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit and generate

the needed input for the required state transitions
o 5. Output Equation Generation: Derive output logic equations for generation of the

output from the inputs and current state.
o 6. Optimization: Optimize the input and output equations. Today, CAD systemsare

typically used for this in real systems.
o 7. Technology Mapping: Generate a logic diagram of the circuit using ANDs, ORs,

Inverters, and F/Fs.
o 8. Verification: Use a HDL to verify the design

Registers and Counters

• An n-bit register is a cascade of n flip-flops and can store an n-bit binarydata

• A counter can count occurrences of events and can generate timing intervals for controlpurposes

A Simple Shift Register

Parallel-Access Shift Register

Counters

• Counters are a specific type of sequential circuit.

• Like registers, the state, or the flip-flop values themselves, serves as the “output.”

• The output value increases by one on each clockcycle.

• After the largest value, the output “wraps around” back to 0.

• Using two bits, we’d get something like this:

Present State Next State

A B A B

0 0

0 1

0 1 1 0

1 0 1 1

1 1 0 0

Benefits of counters

• Counters can act as simple clocks to keep track of “time.” •

You may need to record how many times something has

happened.

– How many bits have been sent or received?

– How many steps have been performed in somecomputation?

• All processors contain a program counter, or PC.

– Programs consist of a list of instructions that are to be executed one after another (for the

most part).

– The PC keeps track of the instruction currently beingexecuted.

– The PC increments once on each clock cycle, and the next program instruction is then

executed.

A Three-Bit Up-Counter

Q1 is connected to clk, Q2 and Q3 are clocked by Q’ of the preceding stage (hence called

asynchronous or ripple counter

\

A Three-Bit Down-Counter

Shift registers:

In digital circuits, a shift register is a cascade of flip-flops sharing the same clock, in which

the output of each flip-flop is connected to the "data" input of the next flip-flop in the chain,

resulting in a circuit that shifts by one position the "bit array" stored in it, shifting in the data present

at its input and shifting out the last bit in the array, at each transition of the clock input. More

generally, a shift register may be multidimensional, such that its "data in" and stage outputs are

themselves bit arrays: this is implemented simply by running several shift registers of the same bit-

length in parallel.

Shift registers can have both parallel and serial inputs and outputs. These are often configured

as serial-in, parallel-out (SIPO) or as parallel-in, serial-out (PISO). There are also types that

have both serial and parallel input and types with serial and parallel output. There are also bi-

directional shift registers which allow shifting in both directions: L→R or R→L. The serial input

and last output of a shift register can also be connected to create a circular shift register

Shift registers are a type of logic circuits closely related to counters. They are basically for the

storage and transfer of digital data.

Buffer register:

The buffer register is the simple set of registers. It is simply stores the binary word. The buffer

may be controlled buffer. Most of the buffer registers used D Flip-flops.

Figure: logic diagram of 4-bit buffer register
The figure shows a 4-bit buffer register. The binary word to be stored is applied to the data

terminals. On the application of clock pulse, the output word becomes the same as the word applied

at the terminals. i.e., the input word is loaded into the register by the application of clock pulse.

When the positive clock edge arrives, the stored word becomes:

Q4Q3Q2Q1=X4X3X2X1

Q=X
Controlled buffer register:

If goes LOW, all the FFs are RESET and the output becomes, Q=0000.

When is HIGH, the register is ready for action. LOAD is the control input. When

LOAD is HIGH, the data bits X can reach the D inputs of FF‘s.

Q4Q3Q2Q1=X4X3X2X1

Q=X

When load is low, the X bits cannot reach the FF‘s.

Data transmission in shift registers:

A number of ff‘s connected together such that data may be shifted into and shifted out of them is

called shift register. data may be shifted into or out of the register in serial form or in parallel form.

There are four basic types of shift registers.

1. Serial in, serial out, shift right, shift registers
2. Serial in, serial out, shift left, shift registers

3. Parallel in, serial out shift registers

4. Parallel in, parallel out shift registers

Serial IN, serial OUT, shift right, shift left register:

The logic diagram of 4-bit serial in serial out, right shift register with four stages. The register can

store four bits of data. Serial data is applied at the input D of the first FF. the Q output of the first

FF is connected to the D input of another FF. the data is outputted from the Q terminal of the last

FF.

When serial data is transferred into a register, each new bit is clocked into the first FF at the positive

going edge of each clock pulse. The bit that was previously stored by the first FF is transferred to

the second FF. the bit that was stored by the Second FF is transferred to the third FF.

Serial-in, parallel-out, shift register:

In this type of register, the data bits are entered into the register serially, but the data stored in the
register is shifted out in parallel form.

Once the data bits are stored, each bit appears on its respective output line and all bits are

available simultaneously, rather than on a bit-by-bit basis with the serial output. The serial-in,

parallel out, shift register can be used as serial-in, serial out, shift register if the output is taken

from the Q terminal of the last FF.

Parallel-in, serial-out, shift register:

For a parallel-in, serial out, shift register, the data bits are entered simultaneously into their

respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial data

bits are transferred out of the register serially. On a bit-by-bit basis over a single line.

There are four data lines A,B,C,D through which the data is entered into the register in

parallel form. The signal shift/ load allows the data to be entered in parallel form into the register

and the data is shifted out serially from terminalQ4

Parallel-in, parallel-out, shift register

In a parallel-in, parallel-out shift register, the data is entered into the register in parallel form,

and also the data is taken out of the register in parallel form. Data is applied to the D input terminals

of the FF‘s. When a clock pulse is applied, at the positive going edge of the pulse, the D inputs

are shifted into the Q outputs of the FFs. The register now stores the data. The stored data is

available instantaneously for shifting out in parallel form.

Bidirectional shift register:

A bidirectional shift register is one which the data bits can be shifted from left to right

or from right to left. A fig shows the logic diagram of a 4-bit serial-in, serial out, bidirectional shift

register. Right/left is the mode signal, when right /left is a 1, the logic circuit works as a shift-

register.the bidirectional operation is achieved by using the mode signal and two NAND gates and

one OR gate for each stage.

A HIGH on the right/left control input enables the AND gates G1, G2, G3 and G4 and

disables the AND gates G5,G6,G7 and G8, and the state of Q output of each FF is passed through

the gate to the D input of the following FF. when a clock pulse occurs, the data bits are then

effectively shifted one place to the right. A LOW on the right/left control inputs enables the AND

gates G5, G6, G7 and G8 and disables the And gates G1, G2, G3 and G4 and the Q output of each

FF is passed to the D input of the preceding FF. when a clock pulse occurs, the data bits are then

effectively shifted one place to the left. Hence, the circuit works as a bidirectional shift register

Figure: logic diagram of a 4-bit bidirectional shift register

Universal shift register:

A register is capable of shifting in one direction only is a unidirectional shift register. One that can

shift both directions is a bidirectional shift register. If the register has both shifts and parallel load

capabilities, it is referred to as a universal shift registers. Universal shift register is a bidirectional

register, whose input can be either in serial form or in parallel form and whose output also can be

in serial form or I parallel form.

The most general shift register has the following capabilities.

1. A clear control to clear the register to 0

2. A clock input to synchronize the operations

3. A shift-right control to enable the shift-right operation and serial input and output lines

associated with the shift-right

4. A shift-left control to enable the shift-left operation and serial input and output lines

associated with the shift-left

5. A parallel loads control to enable a parallel transfer and the n input lines associated with

the parallel transfer

6. N parallel output lines
7. A control state that leaves the information in the register unchanged in the presence of

the clock.

A universal shift register can be realized using multiplexers. The below fig shows the logic

diagram of a 4-bit universal shift register that has all capabilities. It consists of 4 D flip-flops and

four multiplexers. The four multiplexers have two common selection inputs s1 and s0. Input 0 in

each multiplexer is selected when S1S0=00, input 1 is selected when S1S0=01 and input 2 is

selected when S1S0=10 and input 4 is selected when S1S0=11. The selection inputs control the

mode of operation of the register according to the functions entries. When S1S0=0, the present

value of the register is applied to the D inputs of flip-flops. The condition forms a path from the

output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into each

flip-flop the binary value it held previously, and no change of state occurs. When S1S0=01,

terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flop. This causes a shift-

right operation, with serial input transferred into flip-flopA4. When S1S0=10, a shift left operation

results with the other serial input going into flip-flop A1. Finally when S1S0=11, the binary

information on the parallel input lines is transferred into the register simultaneously during the

next clock cycle

Figure: logic diagram 4-bit universal shift register

Function table for theregister

mode control

S0 S1 register operation

0 0 No change

0 1 Shift Right

1 0 Shift left

1 1 Parallel load

Counters:

Counter is a device which stores (and sometimes displays) the number of times particular

event or process has occurred, often in relationship to a clock signal. A Digital counter is a set of

flip flops whose state change in response to pulses applied at the input to the counter. Counters

may be asynchronous counters or synchronous counters. Asynchronous counters are also called

ripple counters

In electronics counters can be implemented quite easily using register-type circuits such as

the flip-flops and a wide variety of classifications exist:

 Asynchronous (ripple) counter – changing state bits are used as clocks to subsequent state

flip-flops

 Synchronous counter – all state bits change under control of a singleclock

 Decade counter – counts through ten states per stage

 Up/down counter – counts both up and down, under command of a control input

 Ring counter – formed by a shift register with feedback connection in a ring

 Johnson counter – a twisted ring counter

Cascaded counter

Modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature, and count

in natural binary Many types of counter circuits are available as digital building blocks, for

example a number of chips in the 4000 series implement different counters.

Occasionally there are advantages to using a counting sequence other than the natural binary

sequence such as the binary coded decimal counter, a linear feed-back shift register counter, or a

gray-code counter.

Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.

Asynchronous counters:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed

from its own inverted output. This circuit can store one bit, and hence can count from zero to one

before it overflows (starts over from 0). This counter will increment once for every clock cycle

and takes two clock cycles to overflow, so every cycle it will alternate between a transition from

0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at

exactly half the frequency of the input clock. If this output is then used as the clock signal for a

similarly arranged D flip-flop (remembering to invert the output to the input), one will get another

1 bit counter that counts half as fast. Putting them together yields a two-bit counter:

Two-bit ripple up-counter using negative edge triggered flip flop:

Two bit ripple counter used two flip-flops. There are four possible states from 2 – bit up-

counting I.e. 00, 01, 10 and 11.

· The counter is initially assumed to be at a state 00 where the outputs of the tow flip-flops are

noted as Q1Q0. Where Q1 forms the MSB and Q0 forms the LSB.

· For the negative edge of the first clock pulse, output of the first flip-flop FF1 toggles its state.
Thus Q1 remains at 0 and Q0 toggles to 1 and the counter state are now read as 01.

· During the next negative edge of the input clock pulse FF1 toggles and Q0 = 0. The output
Q0 being a clock signal for the second flip-flop FF2 and the present transition acts as a negative
edge for FF2 thus toggles its state Q1 = 1. The counter state is now read as 10.

· For the next negative edge of the input clock to FF1 output Q0 toggles to 1. But this transition
from 0 to 1 being a positive edge for FF2 output Q1 remains at 1. The counter state is now read as
11.

· For the next negative edge of the input clock, Q0 toggles to 0. This transition from 1 to 0 acts
as a negative edge clock for FF2 and its output Q1 toggles to 0. Thus the starting state 00 is attained.
Figure shown below

http://en.wikipedia.org/wiki/Flip-flop_(electronics)#JK_flip-flop
http://en.wikipedia.org/wiki/Duty_cycle

Two-bit ripple down-counter using negative edge triggered flip flop:

A 2-bit down-counter counts in the order 0,3,2,1,0,1…….,i.e, 00,11,10,01,00,11 …..,etc. the above

fig. shows ripple down counter, using negative edge triggered J-K FFs and its timing diagram.

 For down counting, Q1‘ of FF1 is connected to the clock of Ff2. Let initially all the FF1

toggles, so, Q1 goes from a 0 to a 1 and Q1‘ goes from a 1 to a 0.

 The negative-going signal at Q1‘ is applied to the clock input of FF2, toggles Ff2 and,

therefore, Q2 goes from a 0 to a 1.so, after one clock pulse Q2=1 and Q1=1, I.e., the state

of the counter is 11.

 At the negative-going edge of the second clock pulse, Q1 changes from a 1 to a 0 and

Q1‘ from a 0 to a 1.

 This positive-going signal at Q1‘ does not affect FF2 and, therefore, Q2 remains at a 1.

Hence , the state of the counter after second clock pulse is 10

 At the negative going edge of the third clock pulse, FF1 toggles. So Q1, goes from a 0 to
a 1 and Q1‘ from 1 to 0. This negative going signal at Q1‘ toggles FF2 and, so, Q2 changes

from 1 to 0, hence, the state of the counter after the third clock pulse is 01.

 At the negative going edge of the fourth clock pulse, FF1 toggles. So Q1, goes from a 1

to a 0 and Q1‘ from 0 to 1. . This positive going signal at Q1‘ does not affect FF2 and, so,

Q2 remains at 0, hence, the state of the counter after the fourth clock pulse is 00.

Two-bit ripple up-down counter using negative edge triggered flip flop:

Figure: asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop:

 As the name indicates an up-down counter is a counter which can count both in upward

and downward directions. An up-down counter is also called a forward/backward counter

or a bidirectional counter. So, a control signal or a mode signal M is required to choose the

direction of count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when

M=0 for down counting, Q1‘ is transmitted to clock of FF2. This is achieved by using two

AND gates and one OR gates. The external clock signal is applied to FF1.

 Clock signal to FF2= (Q1.Up)+(Q1‘. Down)= Q1m+Q1‘M‘

Design of Asynchronous counters:

To design a asynchronous counter, first we write the sequence , then tabulate the values of

reset signal R for various states of the counter and obtain the minimal expression for R and R‘

using K-Map or any other method. Provide a feedback such that R and R‘ resets all the FF‘s after

the desired count

Design of a Mod-6 asynchronous counter using T FFs:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth clock

pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000 because

of the feedback provided. it is ―divide by-6-counter‖, in the sense that it divides the input

clock frequency by 6.it requires three FFs, because the smallest value of n satisfying the

conditionN≤2n is n=3; three FFs can have 8 possible states, out of which only six are utilized and

the remaining two states 110and 111, are invalid. If initially the counter is in 000 state, then after

the sixth clock pulse, it goes to 001, after the second clock pulse, it goes to 010, and so on.

After sixth clock pulse it goes to 000. For the design, write the truth table with present state

outputs Q3, Q2 and Q1 as the variables, and reset R as the output and obtain an expression for R

in terms of Q3, Q2, and Q1that decides the feedback into be provided. From the truth table,

R=Q3Q2. For active-low Reset, R‘ is used. The reset pulse is of very short duration, of the order

of nanoseconds and it is equal to the propagation delay time of the NAND gate used. The

expression for R can also be determined as follows.

Therefore,

R=0 for 000 to 101, R=1 for 110, and R=X=for111

R=Q3Q2Q1‘+Q3Q2Q1=Q3Q2

The logic diagram and timing diagram of Mod-6 counter is shown in the above fig.

The truth table is as shown in below.

After

pulses

 States

Q3 Q2 Q1 R

0

0

0

0

0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 0

5 1 0 1 0

6 1 1 0 1

0 0 0 0

7 0 0 0 0

Design of a mod-10 asynchronous counter using T-flip-flops:

A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10

counter. It requires four flip-flops (condition 10 ≤2n is n=4). So, there are 16 possible states, out

of which ten are valid and remaining six are invalid. The counter has ten stable state, 0000

through 1001, i.e., it counts from 0 to 9. The initial state is 0000 and after nine clock pulses it

goes to 1001. When the tenth clock pulse is applied, the counter goes to state 1010 temporarily,

but because of the feedback provided, it resets to initial state 0000. So, there will be a glitch in

the waveform of Q2. The state 1010 is a temporary state for which the reset signal R=1, R=0 for

0000 to 1001, and R=C for 1011 to 1111.

The count table and the K-Map for reset are shown in fig. from the K-Map R=Q4Q2. So,

feedback is provided from second and fourth FFs. For active –HIGH reset, Q4Q2 is applied to the

clear terminal. For active-LOW reset 4 2 is connected isof all Flip=flops.

Synchronous counters:

Asynchronous counters are serial counters. They are slow because each FF can change state

only if all the preceding FFs have changed their state. if the clock frequency is very high, the

asynchronous counter may skip some of the states. This problem is overcome in synchronous

counters or parallel counters. Synchronous counters are counters in which all the flip flops are

triggered simultaneously by the clock pulses Synchronous counters have a common clock pulse

applied simultaneously to all flip- -Bit Synchronous Binary Counter

Design of synchronous counters:

For a systematic design of synchronous counters. The following procedure is used.

Step 1:State Diagram: draw the state diagram showing all the possible states state diagram which

also be called nth transition diagrams, is a graphical means of depicting the sequence of states
through which the counter progresses.

Step2: number of flip-flops: based on the description of the problem, determine the required

number n of the flip-flops- the smallest value of n is such that the number of states N≤2n--- and the

desired counting sequence.

Step3: choice of flip-flops excitation table: select the type of flip-flop to be used and write the

excitation table. An excitation table is a table that lists the present state (ps) , the next state(ns) and

required excitations.

After

pulses

 Count

Q4 Q3 Q2 Q1

0 0 0 0 0
1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 0 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 0 1 0 1

10 0 0 0 0

Step4: minimal expressions for excitations: obtain the minimal expressions for the excitations of

the FF using K-maps drawn for the excitation of the flip-flops in terms of the present states and

inputs.

Step5: logic diagram: draw a logic diagram based on the minimal expressions

Design of a synchronous 3-bit up-down counter using JK flip-flops:

Step1: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8

states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares. For

selecting up and down modes, a control or mode signal M is required. When the mode signal M=1

and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and the

excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig.

PS mode NS required excitations

Q3 Q2 Q1 M Q3 Q2 Q1 J3 K3 J2 K2 J1 K1

0 0 0 0 1 1 1 1 x 1 x 1 x

0 0 0 1 0 0 1 0 x 0 x 1 x

0 0 1 0 0 0 0 0 x 0 x x 1

0 0 1 1 0 1 0 0 x 1 x x 1

0 1 0 0 0 0 1 0 x x 1 1 x

0 1 0 1 0 1 1 0 x x 0 1 x

0 1 1 0 0 1 0 0 x x 0 x 1

0 1 1 1 1 0 0 1 x x 1 x 1

1 0 0 0 0 1 1 x 1 1 x 1 x

1 0 0 1 1 0 1 x 0 0 x 1 x

1 0 1 0 1 0 0 x 0 0 x x 1

1 0 1 1 1 1 0 x 0 1 x x 1

1 1 0 0 1 0 1 x 0 x 1 1 x

1 1 0 1 1 1 1 x 0 x 0 1 x

1 1 1 0 1 1 0 x 0 x 0 x 1

1 1 1 1 0 0 0 x 1 x 1 x 1

Step4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and

K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3,J2 and K2

based on the excitation table and the minimal expression obtained from them are shown in fig.

00 01 11 10

Q3Q2 Q1M

Step5: draw the logic diagram: a logic diagram using those minimal expressions can be drawn as

shown in fig.

Design of a synchronous modulo-6 gray cod counter:

Step 1: the number of flip-flops: we know that the counting sequence for a modulo-6 gray code

counter is 000, 001, 011, 010, 110, and 111. It requires n=3FFs (N≤2n, i.e., 6≤23). 3 FFs can have

8 states. So the remaining two states 101 and 100 are invalid. The entries for excitation

corresponding to invalid states are don‘t cares.

Step2: the state diagram: the state diagram of the mod-6 gray code converter is drawn as shown

in fig.

1

X

X X X X

X X X

1

Step3: type of flip-flop and the excitation table: T flip-flops are selected and the excitation table

of the mod-6 gray code counter using T-flip-flops is written as shown in fig.

PS

NS
 required

excitations

Q3 Q2 Q1 Q3 Q2 Q1 T3 T2 T1

0 0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 1 0

0 1 1 0 1 0 0 0 1

0 1 0 1 1 0 1 0 0

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

Step4: The minimal expressions: the K-maps for excitations of FFs T3,T2,and T1 in terms of

outputs of FFs Q3,Q2, and Q1, their minimization and the minimal expressions for excitations

obtained from them are shown if fig

Step5: the logic diagram: the logic diagram based on those minimal expressions is drawn as shown

in fig.

Design of a synchronous BCD Up-Down counter using FFs:

Step1: the number of flip-flops: a BCD counter is a mod-10 counter has 10 states (0000 through

1001) and so it requires n=4FFs(N≤2n,, i.e., 10≤24). 4 FFS can have 16 states. So out of 16 states,

six states (1010 through 1111) are invalid. For selecting up and down mode, a control or mode

signal M is required. , it counts up when M=1 and counts down when M=0. The clock signal is

applied to all FFs.

Step2: the state diagram: The state diagram of the mod-10 up-down counter is drawn as shown

in fig.

Step3: types of flip-flops and excitation table: T flip-flops are selected and the excitation table of

the modulo-10 up down counter using T flip-flops is drawn as shown in fig.

The remaining minterms are don‘t cares(∑d(20,21,22,23,24,25,26,37,28,29,30,31)) from

the excitation table we can see that T1=1 and the expression for T4,T3,T2 are asfollows.

T4=∑m(0,15,16,19)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T3=∑m(7,15,16,8)+d(20,21,22,23,24,25,26,27,28,29,30,31)

T2=∑m(3,4,7,8,11,12,15,16)+d(20,21,22,23,24,25,26,27,28,29,30,31)

PS

mode

NS

required excitations

Q4 Q3 Q2 Q1 M Q4 Q3 Q2 Q1 T4 T3 T2 T1

0 0 0 0 0 1 0 0 1 1 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 1 0 0 0 1 1

0 0 1 0 0 0 0 0 1 0 0 1 1

0 0 1 0 1 0 0 1 1 0 0 0 1

0 0 1 1 0 0 0 1 0 0 0 0 1

0 0 1 1 1 0 1 0 0 0 1 1 1

0 1 0 0 0 0 0 1 1 0 1 1 1

0 1 0 0 1 0 1 0 1 0 0 0 1

0 1 0 1 0 0 1 0 0 0 0 0 1

0 1 0 1 1 0 1 1 0 0 0 1 1

0 1 1 0 0 0 1 0 1 0 0 1 1

0 1 1 0 1 0 1 1 1 0 0 0 1

0 1 1 1 0 0 1 1 0 0 0 0 1

0 1 1 1 1 1 0 0 0 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 0 1 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0 1 0 0 1

Step4: The minimal expression: since there are 4 state variables and a mode signal, we require 5

variable kmaps. 20 conditions of Q4Q3Q2Q1M are valid and the remaining 12 combinations are

invalid. So the entries for excitations corresponding to those invalid combinations are don‘t cares.

Minimizing K-maps for T2 we get

T 2= Q4Q1‘M+Q4‘Q1M+Q2Q1‘M‘+Q3Q1‘M‘

Step5: the logic diagram: the logic diagram based on the above equation is shown in fig.

Shift register counters:

One of the applications of shift register is that they can be arranged to form several types of

counters. The most widely used shift register counter is ring counter as well as the twisted ring

counter.

Ring counter: this is the simplest shift register counter. The basic ring counter using D flip-

flops is shown in fig. the realization of this counter using JK FFs. The Q output of each stage is

connected to the D flip-flop connected back to the ring counter.

FIGURE: logic diagram of 4-bit ring counter using D flip-flops

Only a single 1 is in the register and is made to circulate around the register as long as clock pulses

are applied. Initially the first FF is present to a 1. So, the initial state is 1000, i.e., Q1=1,

Q2=0,Q3=0,Q4=0. After each clock pulse, the contents of the register are shifted to the right by

one bit and Q4 is shifted back to Q1. The sequence repeats after four clock pulses. The number

of distinct states in the ring counter, i.e., the mod of the ring counter is equal to number of FFs

used in the counter. An n-bit ring counter can count only n bits, where as n-bit ripple counter can

count 2n bits. So, the ring counter is uneconomical compared to a ripple counter but has advantage

of requiring no decoder, since we can read the count by simply noting which FF is set. Since it is

entirely a synchronous operation and requires no gates external FFs, it has the further advantage

of being very fast.

Timing diagram:

Twisted Ring counter (Johnson counter):

This counter is obtained from a serial-in, serial-out shift register by providing feedback

from the inverted output of the last FF to the D input of the first FF. the Q output of each is

connected to the D input of the next stage, but the Q‘ output of the last stage is connected to the

D input of the first stage, therefore, the name twisted ring counter. This feedback arrangement

produces a unique sequence of states.

The logic diagram of a 4-bit Johnson counter using D FF is shown in fig. the realization

of the same using J-K FFs is shown in fig.. The state diagram and the sequence table are shown

in figure. The timing diagram of a Johnson counter is shown infigure.

Let initially all the FFs be reset, i.e., the state of the counter be 0000. After each clock

pulse, the level of Q1 is shifted to Q2, the level of Q2to Q3, Q3 to Q4 and the level of Q4‘to Q1

and the sequences given in fig.

Figure: Johnson counter with JK flip-flops

Figure: timing diagram

CHAPTER-4: 8085 MICROPROCESSOR

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER

ARCHITECTURE:

A microprocessor is a programmable electronics chip that has computing and decision

making capabilities similar to central processing unit of a computer. Any microprocessor-

based systems having limited number of resources are called microcomputers. Nowadays,

microprocessor can be seen in almost all types of electronics devices like mobile phones,

printers, washing machines etc. Microprocessors are also used in advanced applications like

radars, satellites and flights. Due to the rapid advancements in electronic industry and large

scale integration of devices results in a significant cost reduction and increase application of

microprocessors and their derivatives.

Fig.1 Microprocessor-based system

 Bit: A bit is a single binary digit.

 Word: A word refers to the basic data size or bit size that can be processed by the

arithmetic and logic unit of the processor. A 16-bit binary number is called a word in

a 16-bit processor.

 Bus: A bus is a group of wires/lines that carry similar information.

 System Bus: The system bus is a group of wires/lines used for communication

between the microprocessor and peripherals.

 Memory Word: The number of bits that can be stored in a register or memory element

is called a memory word.

 Address Bus: It carries the address, which is a unique binary pattern used to identify

a memory location or an I/O port. For example, an eight bit address bus has eight lines

and thus it can address 28 = 256 different locations. The locations in hexadecimal

format can be written as 00H – FFH.

 Data Bus: The data bus is used to transfer data between memory and processor or

between I/O device and processor. For example, an 8-bit processor will generally have

an 8-bit data bus and a 16-bit processor will have 16-bit data bus.

 Control Bus: The control bus carry control signals, which consists of signals for

selection of memory or I/O device from the given address, direction of data transfer

and synchronization of data transfer in case of slow devices.

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with

control unit to process the instruction execution. Almost all the microprocessors are based on

the principle of store-program concept. In store-program concept, programs or instructions

are sequentially stored in the memory locations that are to be executed. To do any task using

a microprocessor, it is to be programmed by the user. So the programmer must have idea

about its internal resources, features and supported instructions. Each microprocessor has a

set of instructions, a list which is provided by the microprocessor manufacturer. The

instruction set of a microprocessor is provided in two forms: binary machine code and

mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions

in the form of binary patterns is called a machine language and it is difficult for us to

understand. Therefore, the binary patterns are given abbreviated names, called mnemonics,

which forms the assembly language. The conversion of assembly-level language into binary

machine-level language is done by using an application called assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

 Transistor-Transistor Logic (TTL)

 Emitter Coupled Logic (ECL)

 Complementary Metal-Oxide Semiconductor (CMOS)

Classification of Microprocessors:

Based on their specification, application and architecture microprocessors are classified.

Based on size of data bus:

 4-bit microprocessor

 8-bit microprocessor

 16-bit microprocessor

 32-bit microprocessor

Based on application:

 General-purpose microprocessor- used in general computer system and can be used

by programmer for any application. Examples, 8085 to Intel Pentium.

 Microcontroller- microprocessor with built-in memory and ports and can be

programmed for any generic control application. Example, 8051.

 Special-purpose processors- designed to handle special functions required for an

application. Examples, digital signal processors and application-specific integrated

circuit (ASIC) chips.

Based on architecture:

 Reduced Instruction Set Computer (RISC) processors

 Complex Instruction Set Computer (CISC) processors

2. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5

V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and

address bus width is 16-bit, thus it can address 216 = 64 KB of memory. The internal

architecture of 8085 is shown is Fig. 2.

Fig. 2 Internal Architecture of 8085

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD),

Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to

perform operations. The results of the arithmetic and logical operations are stored in the

accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3.

In addition, it has two 16-bit registers: stack pointer and program counter. They are briefly

described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C,

D, E, H and L. they can be combined as register pairs - BC, DE and HL to perform some

16- bit operations. The programmer can use these registers to store or copy data into the

register by using data copy instructions.

Accumulator

Fig. 3 Register organisation

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit

data and to perform arithmetic and logical operations. The result of an operation is stored in

the accumulator. The accumulator is also identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data

condition of the result in the accumulator and other registers. They are called Zero (Z), Carry

(CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the flag

register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

Fig. 4 Flag register

For example, after an addition of two numbers, if the result in the accumulator is larger than

8-bit, the flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic

operation results in zero, Z flag is set to 1. The S flag is just a copy of the bit D7 of the

accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s

complement representation. The AC flag is set to 1, when a carry result from bit D3 and

passes to bit D4. The P flag is set to 1, when the result in accumulator contains even number

of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a

memory pointer. The microprocessor uses this register to sequence the execution of the

instructions. The function of the program counter is to point to the memory address from

which the next byte is to be fetched. When a byte is being fetched, the program counter is

automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory

location in R/W memory, called stack. The beginning of the stack is defined by loading 16-

bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest

instruction sent here from memory prior to execution. Decoder then takes instruction and

decodes or interprets the instruction. Decoded instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out

the instruction, which has been decoded. Typical buses and their timing are described as

follows:

 Data Bus: Data bus carries data in binary form between microprocessor and other

external units such as memory. It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in

nature. The data bus width of 8085 microprocessor is 8-bit i.e. 28 combination of

binary digits and are typically identified as D0 – D7. Thus size of the data bus

determines what arithmetic can be done. If only 8-bit wide then largest number is

11111111 (255 in decimal). Therefore, larger numbers have to be broken down into

chunks of 255. This slows microprocessor.

 Address Bus: The address bus carries addresses and is one way bus from

microprocessor to the memory or other devices. 8085 microprocessor contain 16-bit

address bus and are generally identified as A0 - A15. The higher order address lines

(A8 – A15) are unidirectional and the lower order lines (A0 – A7) are multiplexed

(time-shared) with the eight data bits (D0 – D7) and hence, they are bidirectional.

 Control Bus: Control bus are various lines which have specific functions for

coordinating and controlling microprocessor operations. The control bus carries

control signals partly unidirectional and partly bidirectional. The following control

and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an

address appears on the AD0 – AD7 lines, after which it becomes 0.

II. RD (active low output): The Read signal indicates that data are being read from

the selected I/O or memory device and that they are available on the data bus.

III. WR (active low output): The Write signal indicates that data on the data bus

are to be written into a selected memory or I/O location.

IV. IO/M (output): It is a signal that distinguished between a memory operation

and an I/O operation. When

1 it is an I/O operation.

IO/M = 0 it is a memory operation and

IO/M =

V. S1 and S0 (output): These are status signals used to specify the type of

operation being performed; they are listed in Table 1.

Table 1 Status signals and associated operations

S1 S0 States

0 0 Halt

0 1 Write

1 0 Read

1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The

microprocessor performs primarily four operations:

I. Memory Read: Reads data (or instruction) from memory.

II. Memory Write: Writes data (or instruction) into memory.

III. I/O Read: Accepts data from input device.

IV. I/O Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control bus as

shown in Fig. 5.

Fig. 5 The 8085 bus structure

3. 8085 PIN DESCRIPTION

Properties:

 It is a 8-bit microprocessor

 Manufactured with N-MOS technology

 40 pin IC package

 It has 16-bit address bus and thus has 216 = 64 KB addressing capability.

 Operate with 3 MHz single-phase clock

 +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All

the signals are classified into six groups:

 Address bus

 Data bus

 Control & status signals

 Power supply and frequency signals

 Externally initiated signals

 Serial I/O signals

Fig. 6 8085 microprocessor pin layout and signal groups

Address and Data Buses:

 A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the

eight bits of the I/O addresses. These lines enter into tri-state high impedance state

during HOLD and HALT modes.

 AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and

the eight bits of the I/O addresses during first clock cycle. Behaves as data bus

during third and fourth clock cycle. These lines enter into tri-state high impedance

state during HOLD and HALT modes.

Control & Status Signals:

 ALE: Address latch enable

 RD : Read control signal.

 WR : Write control signal.

 IO/M , S1 and S0 : Status signals.

Power Supply & Clock Frequency:

 Vcc: +5 V power supply

 Vss: Ground reference

 X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

 CLK: Clock output

Externally Initiated and Interrupt Signals:

 RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-

stated and the processor is reset.

 RESET OUT: This signal indicates that the processor is being reset. The signal can

be used to reset other devices.

 READY: When this signal is low, the processor waits for an integral number of

clock cycles until it goes high.

 HOLD: This signal indicates that a peripheral like DMA (direct memory access)

controller is requesting the use of address and data bus.

 HLDA: This signal acknowledges the HOLD request.

 INTR: Interrupt request is a general-purpose interrupt.

 INTA : This is used to acknowledge an interrupt.

 RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and

have highest priority than INTR interrupt.

 TRAP: This is a non-maskable interrupt and has the highest priority.

Serial I/O Signals:

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM

instruction.

 SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU and decoding unit, the microprocessor manufacturer provides

instruction set for every microprocessor. The instruction set consists of both machine code

and mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called instruction

set. Microprocessor instructions can be classified based on the parameters such functionality,

length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to

destination. The content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition,

subtraction, increment & decrement. One of the data used in arithmetic operation is

stored in accumulator and the result is also stored in accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The

operations like AND, OR and EXOR uses two operands, one is stored in accumulator

and other can be any register or memory location. The result is stored in accumulator.

NOT operation requires single operand, which is stored in accumulator.

IV. Branching operations: Instructions in this group can be used to transfer program

sequence from one memory location to another either conditionally or

unconditionally.

V. Machine control operations: Instruction in this group control execution of other

instructions and control operations like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are

depicted in Table 2.

I. Two-byte instructions: Instruction having two byte in machine code. Examples are

depicted in Table 3

II. Three-byte instructions: Instruction having three byte in machine code. Examples

are depicted in Table 4.

Table 2 Examples of one byte instructions

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 3 Examples of two byte instructions

Opcode Operand Machine code/Hex code Byte description

MVI A, 7FH 3E First byte
 7F Second byte

ADI 0FH C6 First byte
 0F Second byte

Table 4 Examples of three byte instructions

Opcode Operand Machine code/Hex code Byte description

JMP 9050H C3 First byte
 50 Second byte
 90 Third byte

LDA 8850H 3A First byte
 50 Second byte
 88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing.

The various formats for specifying operands are called addressing modes. The 8085 has the

following five types of addressing:

I. Immediate addressing

II. Memory direct addressing

III. Register direct addressing

IV. Indirect addressing

V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the

destination register or memory location.

Ex: MVI A, 9AH

 The operand is a part of the instruction.

 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register.

The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to

destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is

moved to the accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is

mentioned in the instruction.

5. INSTRUCTION SET OF 8085

Data Transfer Instructions:

Arithmetic Instructions:

6. INSTRUCTION EXECUTION AND TIMING DIAGRAM:

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and

operand. The opcode is a command such as ADD and the operand is an object to be operated

on, such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an

instruction. An instruction cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory

or I/O device. A machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution

of instructions or programs in a processor.

To execute a program, 8085 performs various operations as:

 Opcode fetch

 Operand fetch

 Memory read/write

 I/O read/write

External communication functions are:

 Memory read/write

 I/O read/write

 Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this cycle is

given in Fig. 7.

The following points explain the various operations that take place and the signals that are

changed during the execution of opcode fetch machine cycle:

T1 clock cycle

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit

address and A8 – A15 contains higher bit address.

ii. IO/M signal is low indicating that a memory location is being accessed. S1 and S0

also changed to the levels as indicated in Table 1.

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device

load the data bus with the contents of the location addressed by the processor.

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the

instruction register.

ii. The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the necessary

control signals to execute the instruction. Based on the instruction further operations

such as fetching, writing into memory etc takes place.

Fig. 7 Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from memory. The

machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0 signal

is set to 0. The timing diagram of this cycle is given in Fig. 8.

Fig. 8 Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory

location. The processor takes three T-states and WR signal is made low. The timing diagram

of this cycle is given in Fig. 9.

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from

peripheral, which is I/O mapped in the system. The 8-bit port address is placed both in the

lower and higher order address bus. The processor takes three T-states to execute this machine

cycle. The timing diagram of this cycle is given in Fig. 10.

Fig. 9 Timing diagram for memory write machine cycle

Fig. 10 Timing diagram I/O read machine cycle

I/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a

peripheral, which is I/O mapped in the system. The processor takes three T-states to execute

this machine cycle. The timing diagram of this cycle is given in Fig. 11.

Fig. 11 Timing diagram I/O write machine cycle

Ex: Timing diagram for IN 80H.

The instruction and the corresponding codes and memory locations are given in Table 5.

Table 5 IN instruction

Address Mnemonics Opcode

800F IN 80H DB

8010 80

i. During the first machine cycle, the opcode DB is fetched from the memory, placed

in the instruction register and decoded.

ii. During second machine cycle, the port address 80H is read from the next memory

location.

iii. During the third machine cycle, the address 80H is placed in the address bus and the

data read from that port address is placed in the accumulator.

The timing diagram is shown in Fig. 12.

Fig. 12 Timing diagram for the IN instruction

7. 8085 INTERRUPTS

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its current

program execution to another program having higher priority. The interrupt signal may be

given to the processor by any external peripheral device.

The program or the routine that is executed upon interrupt is called interrupt service routine

(ISR). After execution of ISR, the processor must return to the interrupted program. Key

features in the interrupt structure of any microprocessor are as follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt signal.

This address is called interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.

v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status

information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

 Vectored interrupts require the IVA to be supplied by the external device that

gives the interrupt signal. This technique is vectoring, is implemented in

number of ways.

 Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

ii. Maskable and Non-Maskable Interrupts

 Maskable interrupts are interrupts that can be blocked. Masking can be done

by software or hardware means.

 Non-maskable interrupts are interrupts that are always recognized; the

corresponding ISRs are executed.

iii. Software and Hardware Interrupts

 Software interrupts are special instructions, after execution transfer the control

to predefined ISR.

 Hardware interrupts are signals given to the processor, for recognition as an

interrupt and execution of the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags, registers etc) in the

stack.

ii. Load PC with the beginning address of an ISR and start to execute it.

iii. Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST)

instructions. These are one byte instructions that make the processor execute a subroutine at

predefined locations. Instructions and their vector addresses are given in Table 6.

Table 6 Software interrupts and their vector addresses

Instruction Machine hex code Interrupt Vector Address

RST 0 C7 0000H

RST 1 CF 0008H

RST 2 D7 0010H

RST 3 DF 0018H

RST 4 E7 0020H

RST 5 EF 0028H

RST 6 F7 0030H

RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call locations. The

concept of priority does not apply to software interrupts as they are inserted into the program

as instructions by the programmer and executed by the processor when the respective program

lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their

IVA and priorities are given in Table 7.

Table 7 Hardware interrupts of 8085

Interrupt Interrupt vector
address

Maskable or non-
maskable

Edge or level
triggered

priority

TRAP 0024H Non-makable Level 1

RST 7.5 003CH Maskable Rising edge 2

RST 6.5 0034H Maskable Level 3

RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5.

The masking of 8085 interrupts is done at different levels. Fig. 13 shows the organization of

hardware interrupts in the 8085.

Fig. 13 Interrupt structure of 8085

The Fig. 13 is explained by the following five points:

i. The maskable interrupts are by default masked by the Reset signal. So no interrupt is

recognized by the hardware reset.

ii. The interrupts can be enabled by the EI instruction.

iii. The three RST interrupts can be selectively masked by loading the appropriate word

in the accumulator and executing SIM instruction. This is called software masking.

iv. All maskable interrupts are disabled whenever an interrupt is recognized.

v. All maskable interrupts can be disabled by executing the DI instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt

enable flip-flop in the processor and the interrupts are disabled. To enable interrupts, EI

instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the

SIM instruction reads the content of accumulator and accordingly mask or unmask the

interrupts. The format of control word to be stored in the accumulator before executing SIM

instruction is as shown in Fig. 14.

Fig. 14 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data on the SOD

line of the processor. The data to be send is placed in the MSB bit of the accumulator and the

serial data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction

is executed, the accumulator is loaded with the current status of the interrupt masks and the

pending interrupts. The format and the meaning of the data stored in the accumulator after

execution of RIM instruction is shown in Fig. 15.

In addition RIM instruction is also used to read the serial data on the SID pin of the processor.

The data on the SID pin is stored in the MSB of the accumulator after the execution of the

RIM instruction.

Fig. 15 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after reset.

EI : Enable interrupts

MVI A, 08H : Unmask the interrupts

SIM : Set the mask and unmask using SIM instruction

Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of each

instruction. An interrupts signal must be applied long enough for it to be recognized. The

longest instruction of the 8085 takes 18 clock periods. So, the interrupt signal must be applied

for at least 17.5 clock periods. This decides the minimum pulse width for the interrupt signal.

CHAPTER-5: INTERFACING AND SUPPORT CHIPS

1. INTERFACING MEMORY AND I/O DEVICES WITH 8085

The programs and data that are executed by the microprocessor have to be stored in

ROM/EPROM and RAM, which are basically semiconductor memory chips. The programs

and data that are stored in ROM/EPROM are not erased even when power supply to the chip

is removed. Hence, they are called non-volatile memory. They can be used to store permanent

programs.

In a RAM, stored programs and data are erased when the power supply to the chip is removed.

Hence, RAM is called volatile memory. RAM can be used to store programs and data that

include, programs written during software development for a microprocessor based system,

program written when one is learning assembly language programming and data enter while

testing these programs.

Input and output devices, which are interfaced with 8085, are essential in any microprocessor

based system. They can be interfaced using two schemes: I/O mapped I/O and memory-

mapped I/O. In the I/O mapped I/O scheme, the I/O devices are treated differently from

memory. In the memory-mapped I/O scheme, each I/O device is assumed to be a memory

location.

2. INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of memory

locations can be interfaced with it. The memory address space of the 8085 takes values from

0000H to FFFFH.

The 8085 initiates set of signals such as IO/M , RD and WR when it wants to read from and

write into memory. Similarly, each memory chip has signals such as CE or CS(chip enable

or chip select), OE or RD (output enable or read) and WE or WR (write enable or write)

associated with it.

Generation of Control Signals for Memory:

When the 8085 wants to read from and write into memory, it activates IO/M , RD and WR

signals as shown in Table 8.

Table 8 Status of IO/M , RD and WR signals during memory read and write operations

IO/M

RD

WR Operation

0 0 1 8085 reads data from memory

0 1 0 8085 writes data into memory

Using IO/M , RD and WR signals, two control signals MEMR (memory read) and MEMW

(memory write) are generated. Fig. 16 shows the circuit used to generate these signals.

Fig. 16 Circuit used to generate MEMR and MEMW signals

When is IO/M high, both memory control signals are deactivated irrespective of the status

of RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such that the address

range allocated to the chip is 0000H – 1FFFH.

Specification of IC 2764:

 8 KB (8 x 210 byte) EPROM chip

13 address lines (213 bytes = 8 KB)

 Interfacing:

 13 address lines of IC are connected to the corresponding address lines of 8085.

 Remaining address lines of 8085 are connected to address decoder formed using

logic gates, the output of which is connected to the CE pin of IC.

 Address range allocated to the chip is shown in Table 9.

 Chip is enabled whenever the 8085 places an address allocated to EPROM chip in

the address bus. This is shown in Fig. 17.

Fig. 17 Interfacing IC 2764 with the 8085

Table 9 Address allocated to IC 2764

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder such that the

starting address assigned to the chip is 4000H.

Specification of IC 6264:

 8K x 8 RAM

 8 KB = 213 bytes

 13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the address

4000H to 5FFFH are written in binary form, the values in the lines A15, A14, A13 are 0, 1

and 0 respectively. The NAND gate is designed such that when the lines A15 and A13 carry

0 and A14 carries 1, the output of the NAND gate is 0. The NAND gate output is

in turn connected to the CE1 pin of the RAM chip. A NAND output of 0 selects the RAM

chip for read or write operation, since CE2 is already 1 because of its connection to +5V. Fig.

18 shows the interfacing of IC 6264 with the 8085.

Fig. 18 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the starting

addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

 2 K x 8 RAM

 2 KB = 211 bytes

 11 address lines

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1 is and

chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of the two

chips.

Table 10 Address range for IC 6116

Interfacing:

 Fig. 19 shows the interfacing.

 A0 – A10 lines of 8085 are connected to 11 address lines of the RAM chips.

 Three address lines of 8085 having specific value for a particular RAM are connected

to the three select inputs (C, B and A) of 74LS138 decoder.

 Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and A13=0,

A12=1 and A11=0 for the address assigned to RAM 2.

 Remaining lines of 8085 which are constant for the address range assigned to the two

RAM are connected to the enable inputs of decoder.

 When 8085 places any address between 8000H and 87FFH in the address bus, the

select inputs C, B and A of the decoder are all 0. The Y0 output of the decoder is also

0, selecting RAM 1.

 When 8085 places any address between 9000H and 97FFH in the address bus, the

select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of the decoder

is also 0, selecting RAM 2.

Fig. 19 Interfacing two 6116 RAM chips using 74LS138 decoder

3. PERIPHERAL MAPPED I/O INTERFACING

In this method, the I/O devices are treated differently from memory chips. The control signals

I/O read (IOR) and I/O write (IOW), which are derived from the IO/M , RD and WR signals

of the 8085, are used to activate input and output devices, respectively. Generation of these

control signals is shown in Fig. 20. Table 11 shows the status of IO/M , RD and WR signals

during I/O read and I/O write operation.

Fig. 20 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access output

device. Each I/O device is identified by a unique 8-bit address assigned to it. Since the control

signals used to access input and output devices are different, and all I/O device use 8-bit

address, a maximum of 256 (28) input devices and 256 output devices can be interfaced with

8085.

Table 11 Status of IOR and IOW signals in 8085.

IO/M

RD

WR

IOR

IOW Operation

1 0 1 0 1 I/O read operation

1 1 0 1 0 I/O write operation

0 X X 1 1 Memory read or write operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to the DIP

switch if F0H.

IN instruction is used to get data from DIP switch and store it in accumulator. Steps involved

in the execution of this instruction are:

i. Address F0H is placed in the lines A0 – A7 and a copy of it in lines A8 – A15.

ii. The IOR signal is activated (IOR = 0), which makes the selected input device to

place its data in the data bus.

iii. The data in the data bus is read and store in the accumulator.

Fig. 21 shows the interfacing of DIP switch.

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 = F0H

A0 – A7 lines are connected to a NAND gate decoder such that the output of NAND gate is

0. The output of NAND gate is ORed with the IOR signal and the output of OR gate is

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the DIP switch

is placed on the data bus of the 8085. The 8085 read data and store in the

accumulator. Thus data from DIP switch is transferred to the accumulator.

Fig. 21 interfacing of 8-bit DIP switch with 8085

4. MEMORY MAPPED I/O INTERFACING

In memory-mapped I/O, each input or output device is treated as if it is a memory location.

The MEMR and MEMW control signals are used to activate the devices. Each input or output

device is identified by unique 16-bit address, similar to 16-bit address assigned to

memory location. All memory related instruction like LDA 2000H, LDAX B, MOV A, M

can be used.

Since the I/O devices use some of the memory address space of 8085, the maximum memory

capacity is lesser than 64 KB in this method.

Ex: Interface an 8-bit DIP switch with the 8085 using logic gates such that the address

assigned to it is F0F0H.

Since a 16-bit address has to be assigned to a DIP switch, the memory-mapped I/O technique

must be used. Using LDA F0F0H instruction, the data from the 8-bit DIP switch can be

transferred to the accumulator. The steps involved are:

i. The address F0F0H is placed in the address bus A0 – A15.

ii. The MEMR signal is made low for some time.

iii. The data in the data bus is read and stored in the accumulator.

Fig. 22 shows the interfacing diagram.

Fig. 22 Interfacing 8-bit DIP switch with 8085

When 8085 executes the instruction LDA F0F0H, it places the address F0F0H in the address

lines A0 – A15 as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 = F0F0H

The address lines are connected to AND gates. The output of these gates along with MEMR

signal are connected to a NAND gate, so that when the address F0F0H is placed in the address

bus and MEMR = 0 its output becomes 0, thereby enabling the buffer 74LS244. The data

from the DIP switch is placed in the 8085 data bus. The 8085 reads the data from

the data bus and stores it in the accumulator.

INTEL 8255: (Programmable Peripheral Interface)

The 8255A is a general purpose programmable I/O device designed

for use with Intel microprocessors. It consists of three 8-bit bidirectional

I/O ports (24I/O lines) that can be configured to meet different system

I/O needs. The three ports are PORT A, PORT B & PORT C. Port A

contains one 8-bit output latch/buffer and one 8-bit input buffer. Port B

is same as PORT A or PORT B. However, PORT C can be split into

two parts PORT C lower (PC0-PC3) and PORT C upper (PC7-PC4) by

the control word. The three ports are divided in two groups Group A

(PORT A and upper PORT C) Group B (PORT B and lower PORT C).

The two groups can be programmed in three different modes. In the

first mode (mode 0), each group may be programmed in either input

mode or output mode (PORT A, PORT B, PORT C lower, PORT C

upper). In mode 1, the second’s mode, each group may be

programmed to have 8-lines of input or output (PORT A or PORT B)

of the remaining 4-lines (PORT C lower or PORT C upper) 3-lines are

used for hand shaking and interrupt control signals. The third mode of

operation (mode 2) is a bidirectional bus mode which uses 8-line

(PORT A only for a bidirectional bus and five lines (PORT C upper 4

lines and borrowing one from other group) for handshaking.

The 8255 is contained in a 40-pin package, whose pin out is

shown below:

The block diagram is shown below:

PIN Names

RESET – Reset input

 - Chip selected

 - Read input

 - Write input

A0 A1 – Port Address

PA7 – PA0 – PORT A

PB7 – PB0 – PORT B

PC7 – PC0 – PORT C

VCC - +5v

GND - Ground

Functional Description:

This support chip is a general purpose I/O component to interface

peripheral equipment to the microcomputer system bus. It is

programmed by the system software so that normally no external logic

is necessary to interface peripheral devices or structures.

Data Bus Buffer:

It is a tri-state 8-bit buffer used to interface the chip to the system data

bus. Data is transmitted or received by the buffer upon execution of

input or output instructions by the CPU. Control words and status

information are also transferred through the data bus buffer. The data

lines are connected to BDB of p.

Read/Write and logic control:

The function of this block is to control the internal operation of the

device and to control the transfer of data and control or status words.

It accepts inputs from the CPU address and control buses and in turn

issues command to both the control groups.

 Chip Select:

A low on this input selects the chip and enables the communication

between the 8255 A & the CPU. It is connected to the output of address

decode circuitry to select the device when it (Read). A low on this

input enables the 8255 to send the data or status information to the

CPU on the data bus.

 (Write):

A low on this input pin enables the CPU to write data or control words

into the 8255 A.

A1, A0 port select:

These input signals, in conjunction with the and inputs,

control the selection of one of the three ports or the control word

registers. They are normally connected to the least significant bits of

the address bus (A0 and A1).

Following Table gives the basic operation,

A1 A0

 Input operation

0 0 0 1 0 PORT A Data bus

0 1 0 1 0 PORT B Data bus

1 0 0 1 0 PORT C Data bus

0

0

1

0

0

Output operation

Data bus PORT A

0 1 1 0 0 Data bus PORT B

1 0 1 0 0 Data bus PORT C

1 1 1 0 0 Data bus control

All other states put data bus into tri-state/illegal condition.

RESET:

A high on this input pin clears the control register and all ports (A, B &

C) are initialized to input mode. This is connected to RESET OUT of

8255. This is done to prevent destruction of circuitry connected to port

lines. If port lines are initialized as output after a power up or

reset, the port might try to output into the output of a device connected

to same inputs might destroy one or both of them.

PORTs A, B and C:

The 8255A contains three 8-bit ports (A, B and C). All can be configured

in a variety of functional characteristic by the system software.

PORTA:

One 8-bit data output latch/buffer and one 8-bit data input latch.

PORT B:

One 8-bit data output latch/buffer and one 8-bit data input buffer.

PORT C:

One 8-bit data output latch/buffer and one 8-bit data input buffer (no

latch for input). This port can be divided into two 4-bit ports under the

mode control. Each 4-bit port contains a 4-bit latch and it can be used

for the control signal outputs and status signals inputs in conjunction

with ports A and B.

Group A & Group B control:

The functional configuration of each port is programmed by the system

software. The control words outputted by the CPU configure the

associated ports of the each of the two groups. Each control block

accepts command from Read/Write content logic receives control words

from the internal data bus and issues proper commands to its

associated ports.

Control Group A – Port A & Port C upper

Control Group B – Port B & Port C lower

The control word register can only be written into No read operation if

the control word register is allowed.

Operation Description:

Mode selection:

There are three basic modes of operation that can be selected by the

system software.

Mode 0: Basic Input/output

Mode 1: Strobes Input/output

Mode 2: Bi-direction bus.

When the reset input goes HIGH all poets are set to mode’0’ as input

which means all 24 lines are in high impedance state and can be used

as normal input. After the reset is removed the 8255A remains in the

input mode with no additional initialization. During the execution of the

program any of the other modes may be selected using a single output

instruction.

The modes for PORT A & PORT B can be separately defined, while

PORT C is divided into two portions as required by the PORT A and

PORT B definitions. The ports are thus divided into two groups Group

A & Group B. All the output register, including the status flip-flop will

be reset whenever the mode is changed. Modes of the two group

may be combined for any desired I/O operation e.g. Group A in mode

‘1’ and group B in mode ‘0’.

The basic mode definitions with bus interface and the mode definition

format are given in fig (a) & (b),

