| Discipline: | Semester: | Name of the Teaching faculty: | |-----------------------------------|--|---| | Mechanical
Engineering | 3 rd Semester
2025-2026 Dt
15/07/2025 | Tapas Kumar Satpathy, Lecturer, Dept of Mechanical Engineering | | | To
15/11/2025 | | | Subject : Material
Testing Lab | Class Allotted: 60
Hours | No of weeks :18 | | Week | Class Day | Practical Topics | | 1 st | 1 st | Introduction of MEL lab | | | 2 nd | Introduction of MEL lab | | 2 nd | 1st | Determination of microstructure of ferrous and non ferrous material using a prepared specimen . | | | 2 nd | Determination of microstructure of ferrous and non ferrous material using a prepared specimen. | | 3 rd | 1 st | Crack detection of a specimen using Visual inspection and ring test | | | 2 nd | Crack detection of a specimen using Die penetration test | | 4 th | 1 st | Crack detection of a specimen using Magnetic particle test | | | 2 nd | Determination of Rockwell's Hardness Number for mild steel, high carbon steel | | 5th | 1 st | Determination of Rockwell's Hardness Number for brass, copper and aluminium | | | 2 nd | Finding the resistance of materials to impact loads by Izod test | | 6 th | 1 st | Finding the resistance of materialsto impact loads by Charpy test | | | 2 nd | Torsion test on mild steel – relation between torque and angle o twist | | 7 th | 1st | Torsion test on mild steel – relation between shear modulus and shear stress | | | 2 nd | Finding Young's Modulus of Elasticity, yield points in mild steel | | 8 th | 1 st | Finding the percentage elongation and percentage reduction in area in mild steel | | | 2 nd | Plotting stress strain diagram for mild steel | | 9th | 1 st | Determination of modulus of rigidity of Open & Closed coil sprin by load deflection method | | | 2 nd | Determination of strain energy of Open & Closed coil spring by load deflection method | | 10 th | 1st | Determination of shear stress and stiffness of Open & Closed coi spring by load deflection method | | 11 th | 1 5t | Single or double Shear test on M.S. bar to finding the resistance of material to shear load | |------------------|-----------------|---| | | 2nd | Single or double Shear test on M.S. bar to finding the resistance of material to shear load | | 12 th | 1 st | Revision | | | 2 nd | Revision | | 13 th | 1 st | Revision | | | 2 nd | Revision | | 14 th | 1 st | Revision | | | 2 nd | Revision | | 15 th | 1 st | Revision | | | 2 nd | Revision | | 16 th | 1 st | Revision | | e p | 2 nd | Revision | | 17 th | 1 st | Revision | | | 2 nd | Revision | Tapas Kieman Satpally 19/87/228 (FACULTY)