Discipline: Mechanical Engineering	Semester: 3 rd Semester 2025-2026 Dt-15/07/2025 To 15/11/2025	Name of the Teaching Faculty: Mrs. Shradha Suman Adabar (Lect, Mech, Engg)
Subject: Strength Of material	No. of Days/week Class Allotted: 45	No of weeks: 18
week	Class Day	Theory Topics
1 _{5t}	1 st	Types of forces; Stress, Strain and their nature; Mechanical properties of common engineering materials;
	2 _{nd}	Significance of various points on stress – strain diagram for M.S. and C.I. specimens; Significance of factor of safety; Relation between elastic constants
	3rd	Stress and strain values in bodies of uniform section and of composite section under the influence of normal forces; Thermal stresses in bodies of uniform section and composite sections
2 _{nd}	1 st	Related numerical problems on the above topics.
	2 _{nd}	Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience; Derivation of strain energy for the following cases: i) Gradually applied load,
	3rd	ii) Suddenly applied load, iii) Impact/ shock load; Related numerical problems.
3rd	1st	Problem practice
	2nd	Types of beams with examples: a) Cantilever beam, b) Simply supported beam c) Over hanging beam, d) Continuous beam, e) Fixed beam;
	3rd	beam, b) Simply supported beam, c) Over hanging beam, d) Continuous beam e) Fixed beam; Types of Loads – Point load, UDL and UVL; Definition and explanation of shear force and bending moment;
	1st	Calculation of shear force and bending moment and drawing the S.F and B.M. diagrams by the analytical method only for the following cases: a) Cantilever with point loads
4th	2 _{nd}	Calculation of shear force and bending moment and drawing the S.F and B.M. diagrams by the analytical method only for the following cases b) Cantilever with uniformly
		distributed load,
	3rd	c) Simply supported beam with point loads,
	1st	d) Simply supported beam with UDL
	2nd	e) Over hanging beam with point loads, at the center and at free ends
5 th	3rd	f) Over hanging beam with UDL throughout

t distribution and a Comment			
Alli	1ii	(II) Combination of point and then for the above; Related numerical problems.	
	Buil	Problem practice on SATUR MANO	
	Au.	Problem practice on SAD & RAMO	
3/11	111	Explanation of terms: Neutral layer, Neutral Axis, Modulus of Section, Moment of Rusistance, Bending stress, Radius of curvature, Definition and explanation of cleffection as applied to bearms,	
	200	Assumptions in theory of simple bending;	
	Au	Bending Equation $M/I = \sigma/Y = E/R$ with derivation	
8m	1.1	Problems involving calculations of bending stress, modulus of section and mome of resistance	
	2nd	Problem practice	
ence	Bra	Problem practice	
gth .	Lat	Calculation of safe loads and safe span and dimensions of cross-section;	
	2nd	Problem practice	
	Brd	Deflection formulae without proof for cantilever and simply supported beams with point load and UDL only (Standard cases only); Related numerical problem	
10"	1st 2nd	Continue Problem practice	
	9rd	Problem practice	
1100	1.1	Definition and function of shaft; Calculation of polar M.I. 9 9 for solid and holical shafts; Classification of springs; Nomenclature of closed coil helical springs at liffness of spring;	
	2nd	Continue	
19056 5710	åre.	Assumptions in simple torsion; Derivation of the equation T/J=fs/R=GS/L	
1211	Lu Continue		
	2111	Problems on design of shaft based on strength and rigidity	
	Ani	Problem practice	
13111	J	Numerical Problems related to comparison of strength and weight of sold and hollow shafts	
	3/11	Deflection formula for closed coil helical spring (without derivation);	
	31	Numerical problems on closed coil helical spring to find safe load, deflection, so of coil and number of coils.	
		Explanation of longitudinal and horse strategy in the light of circummental and	

15 th	1 st	Derivation of expressions for the longitudinal and hoop stress for seamless and seam shells;
	2nd	Related numerical Problems for safe thickness and safe working pressure.
	3rd	Problem practice
16 th	1st	Problem practice
	2nd	Revision chapter-1
	3rd	Revision chapter-1
17 th	1 _{st}	Revision chapter-2
	2 _{nd}	Revision chapter-2
	3rd	Revision chapter-3
18 th	1 st	Revision chapter-4
	2 _{nd}	Revision chapter-4
	3rd	Revision chapter-5

SIGNATURE OF THE FACULTY

SIGNATURE OF H.O.D.