LESSON PLAN OF ENERGY CONVERSION-II			
Discipline: - ELECTRICAL ENGG	Semester: - 5 TH SEMESTER (WINTER)	Name of the Teaching Faculty: Shri NITESH KUMAR ACHARYA, LECTURER IN ELECTRICAL, G.P BARGARH	
Subject: - ENERGY CONVERSION-II	No. of Days/week Class Allotted: 04 (4L)		
week	Class Day	Theory Topics	
	1 st	ALTERNATOR: Types of alternators and their constructional features.	
1 st	2nd	Basic working principle of alternator and the Relation between speed and frequency.	
	3rd	Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor).	
	4th	Explain harmonics, its causes and impact on winding factor.	
2nd	1 st	E.M.F equation of alternator. (Solve numerical problems).	
	2nd	Explain Armature reaction and its effect on emf at different power factor of load.	
	3rd	The vector diagram of loaded alternator. (Solve numerical problems.)	
	4th	Testing of alternator (Solve numerical problems) Open circuit test.	
3rd	1 st	Short circuit test. Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)	
	2nd	Parallel operation of alternator using synchro- scope method.	
	3rd	Parallel operation of alternator using dark & bright lamp method.	
	4th	Explain distribution of load by parallel connected alternators.	
4th	1 st	SYNCHRONOUS MOTOR: Constructional feature of Synchronous Motor.	
	2nd	Principles of operation, concept of load angle. Derive torque, power developed.	
	3rd	Effect of varying load with constant excitation.	
	4th	Effect of varying excitation with constant load.	

	1st	Power angle characteristics of cylindrical rotor motor
5th	2nd	Explain effect of excitation on Armature current and power factor
	3rd	Hunting in Synchronous Motor.
	4th	Function of Damper Bars in synchronous motor and generator.
	1 st	Describe method of starting of Synchronous motor. State application of synchronous motor.
6 th	2nd	THREE PHASE INDUCTION MOTOR: Production of rotating magnetic field
	3rd	Constructional feature of Squirrel cage and Slip ring induction motors. Working principles of operation of 3-phase Induction motor.
	4th	Define slip speed, slip and establish the relation of slip with rotor quantities.
	1 st	Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (Solve numerical problems)
7 th	2nd	Torque-slip characteristics.
	3rd	Derive relation between full load torque and starting torque etc. (solve numerical problems)
	4th	Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (Solve numerical problems)
8th	1 st	Methods of starting and different types of starters used for three phase Induction motor.
	2nd	Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods.
	3rd	Plugging as applicable to three phase induction motor.
	4th	Describe different types of motor enclosures.
9th	1 st	Explain principle of Induction generator and state its application.
	2nd	SINGLE PHASE INDUCTION MOTOR: Explain Ferrari's principle.
	3rd	Explain double revolving field theory and Cross-field theory to analyze starting torque of 1- phase induction motor.
	4th	Explain working principle, Torque-speed characteristics, performance characteristics of single-phase induction motor

10 th	1 st	Split phase Induction motor, Capacitor Start Induction motor
	2nd	Permanent Capacitor motor, Shaded Pole motor
	3rd	Explain the method to change the direction of rotation of above motor.
	4th	COMMUTATOR MOTOR:
		Construction, working principle, Running characteristic and application of single series motor.
11th	1st	Construction, working principle and application of Universal motors.
	2nd	Working principle of Repulsion start Motor.
	3rd	Repulsion start Induction run motor, Repulsion Induction motor
	4th	SPECIAL ELECTRICAL MACHINE: Principle of Stepper motor.
		Classification of Stepper motor
12th	1 st	Principle of variable reluctant stepper motor.
	2nd	Principle of Permanent magnet stepper motor.
	3rd	Principle of hybrid stepper motor.
	4th	Applications of Stepper motor.
13th	1 st	THREE PHASE TRANSFORMERS:
		Explain Grouping of winding, Advantages Explain parallel operation of the three phase transformers.
	2nd	Explain tap changer (On/Off load tap changing)
	3rd	Explain tap changer (On/OH load tap changing)
	4th	Maintenance Schedule of Power Transformers.
14th	1 st	Numerical discussion of Alternator.
	2nd	Numerical discussion of Alternator.
	3rd	Numerical discussion of Three phase Induction motor.
	4th	Numerical discussion of Three phase Induction motor.
15 th	1st	Previous year question discussion
	2nd	Previous year question discussion
	3rd	Previous year question discussion
	4th	Previous year question discussion