
LEARNING MATERIAL

ON

COMPUTER APPLICATION
FOR

1st /2nd semester of all Engineering Branches

PREPARED BY,

Mrs. Banani Mohanty

Lecturer, Computer Science Engineering

DEPARTMENT OF MATH & SCIENCE

GOVT. POLYTECHNIC, BARGARH

CHAPTER -1: COMPUTER ORGANISATION

1.1 Introduction to Computer
 Computer is an electronic device that operates (works) under the control of programs

stored in its own memory unit.

 A computer is an electronic machine that processes raw data to give information as

output.

 An electronic device that accepts data as input, and transforms it under the influence

of a set of special instructions called Programs, to produce the desired output (referred

to as Information).

Explanations:
 A computer is described as an electronic device because; it is made up of electronic

components and uses electric energy (such as electricity) to operate.

 A computer has an internal memory, which stores data & instructions temporarily

awaiting processing, and even holds the intermediate result (information) before it is

communicated to the recipients through the Output devices.

 It works on the data using the instructions issued, means that, the computer cannot do

any useful job on its own. It can only work as per the set of instructions issued.

 A computer will accept data in one form and produce it in another form. The data is

normally held within the computer as it is being processed.

Program:

 A computer Program is a set of related instructions written in the language of the

computer & is used to make the computer perform a specific task (or, to direct the

computer on what to do).

 A set of related instructions which specify how the data is to be processed.

 A set of instructions used to guide a computer through a process.

Data:

 Data is a collection of raw facts, figures or instructions that do not have much meaning

to the user.

 Data may be in form of numbers, alphabets/letters or symbols, and can be processed

to produce information.

Types of Data

There are two types/forms of data:

a). Digital (discrete) data:

Digital data is discrete in nature. It must be represented in form of numbers, alphabets or

symbols for it to be processed by a computer. Digital data is obtained by counting.

E.g. 1, 2, 3…

b). Analogue (continuous) data:

Analogue data is continuous in nature. It must be represented in physical nature in order to

be processed by the computer. • Analogue data is obtained by measurement. E.g. Pressure,

Temperature, Humidity, Lengths or currents, etc. The output is in form of smooth graphs from

which the data can be read.

Data Processing:

 It is the process of collecting all items of data together & converting them into
information.

 Processing refers to the way the data is manipulated (or handled) to turn it into

information.

 The processing may involve calculation, comparison or any other logic to produce the

required result. The processing of the data usually results in some meaningful

information being produced.

Information:

 Information is the data which has been refined, summarized & manipulated in the way

you want it, or into a more meaningful form for decision-making.

 The information must be accurate, timely, complete and relevant.

1.2 Evolution of Computers

Computer evolution refers to the change in computer technology right from the time
computers were first used to the present. As computing evolves to higher system levels, so its
design also changes, from technical to socio-technical design.

The series of the evolution of computers are given below.

 Abacus

 Pascaline

 Difference engine

 Punched card equipment

 ABC

 UNIVAC - I

Abacus

 The present day computers are a result of an evolutionary process which started way

back in 500 B.C. when Egyptian used a machine which is an early form of Abacus.

 However the present form of Abacus is attributed to the Chinese and Japanese.

 This is a machine, which was used for addition, subtraction, multiplication and division

operation.

Pascaline

 In 1645 a device known as Pascaline was invented by French mathematician Blaise
Pascal.

 The machine was also used per addition and subtraction purpose.

 The device was operated by dialing a set of wheels.

 In 1671 Leibniz improved on Pascal's adding machine and invented the Leibniz's

Calculator.

Difference engine

 In 1822 Charles Babbage invented a Difference Engine.

 The purpose of this device was to calculate the roots of polynomial equations and

prepare astronomy table for the British Navy.

 He upgraded this to, invent an Analytical engine, which could store program

instructions initially coded on punched cards and subsequently shared internally.

 Therefore Charles Babbage is known as the father of computers.

Punched card equipment

 In 1890 Dr. H. Hollerith developed punched card equipment.

 This equipment read the holes punched in the card and mechanically performed the

statistical analysis.

ABC (Atanasoff-Berry Computer)

 The first pure electronic computer was invented by J. V. Atanasoff and C. Berry which

is known as Atanasoff-Berry Computer or ABC.

 It used vacuum tubes for both data storage and data computation.

 Subsequently Electronic Numerical Integrator and Calculator (ENIAC) was designed

and accepted as the general purpose computer.

UNIVAC

 In 1945 John Von Neumann first gave the idea of sharing the same internal memory

for storing both data and instruction, which was subsequently adopted in every

computer organization.

 On this principle subsequently Universal Automatic Computer (UNIVAC-1) was

invented

1.3 Generation of Computers
Computers are devices that accomplish tasks or calculations in accordance to a set of

directions, or programs. The first fully electronic computers, introduced in the 1940s, were

voluminous devices that required teams of people to handle. In comparison to those new

machines, today‘s computers are astounding. They are not only thousands of times more

expeditious, but also they can fit on your desk, on your lap, or even in your pocket.

Computers are such an integral part of our everyday life now most people take them for

granted.

Computers work through an interaction of hardware and software. The whole picture of

the computer goes back to decades. However there are five apparent generations of

computers. Each generation is defined by a paramount technological development that

changes necessarily how computers operate – leading to more compressed, inexpensive, but

more dynamic, efficient and booming machines.

First Generation – Vacuum Tubes (1940 – 1956)

These ancient computers utilized vacuum tubes as circuitry and magnetic drums for

recollection. As a result they were huge, actually taking up entire rooms and costing

resources to run. These were ineffective materials which produce a huge amount of heat,

sucked enormous electricity and subsequently engendered an abundance of heat which

caused perpetual breakdowns.

These first generation computers relied on ‗machine language‘ (which is the most

fundamental programming language that can be understood by computers). These

computers were limited to solving one problem at a time. Input was predicated on punched

cards and paper tape. Output emerged on print-outs. The two eminent machines of this era

were the UNIVAC and ENIAC machines – the UNIVAC is the first ever commercial computer

which was purchased in 1951 by a business named as the US Census Bureau.

Second Generation – Transistors (1956 – 1963)

The supersession of vacuum tubes by transistors, visualized the onset of the second

generation of computing. Although first invented in 1947, transistors weren‘t used

considerably in computers until the cessation of the 1950s. They were a huge development

over the vacuum tube, despite the fact still subjecting computers to destroying different levels

of heat. However they were extremely superior to the vacuum tubes, making computers

smaller, more expeditious, inexpensive and less burdensome on electricity use. They still

count on punched card for input/printouts.

The language emerged from strange binary language to symbolic (‗assembly‘) languages.

These meant programmers could discover instructions in words. Meanwhile during the same

time high caliber programming languages were being developed (early versions of COBOL

and FORTRAN). Transistor-driven machines were the first computers to store instructions

into their recollections, peregrinating from magnetic drum to magnetic core ‗technology‘. The

anticipatory versions of these machines were created for the atomic energy industry.

Third Generation – Integrated Circuits (1964 – 1971)
By this phase, transistors were now being miniaturized and put on silicon chips. This led to a

huge improvement in speed and effectiveness of these machines. These were the first
computers where users interacted utilizing keyboards and monitors who interfaced with an
operating system, a consequential leap up from the punch cards and printouts. This facilitated
these machines to run various applications at once utilizing a central program which functioned
to monitor memory.

As a result of these advances which again made machines more reasonable and more tiny,
a brand new group of users emerged during the ‗60s.

Fourth Generation – Microprocessors (1972 – 2010)

This innovation can be defined in one word: Intel. The chip-maker accomplished the Intel

4004 chip in 1971, which located all components of computer such as CPU, recollection,

input/output controls onto a single chip. What overcrowded a room in the 1940s now gets fit

in the palm of the hand. The Intel chip contained thousands of unified circuits. The year 1981

saw the first ever computer (IBM) categorically designed for home use and 1984 saw the

Macintosh introduced by Apple. Microprocessors even transformed beyond the realm of

computers and into an incrementing number of everyday products.

The incremented power of these small computers denoted they could be linked, establishing

networks. Which eventually led to the expansion, birth and rapid evolution of the Internet?

Other primary advances during this period have been the Graphical user interface (GUI), the

mouse and more of late the startling advances in laptop capability and hand-held

contrivances.

Fifth Generation – Artificial Intelligence (2010 Onwards)

Computer devices with artificial potentiality are still in development, but some of these

technologies are commencing to emerge and be used such as voice recognition. AI is an

authenticity, made possible by adopting parallel processing and superconductors. Inclining to

the future, computers will be thoroughly revolutionized again by quantum computation,

molecular and nano technology. The essence of fifth generation will be utilizing these

technologies to ultimately engender machines which can proceed and acknowledge natural

language, and have efficiency to determine and organize themselves.

Summary of Generation of computers

Features

1st

Generation
Computer

2nd Generation

Computer

3rd

Generation
Computer

4th Generation

Computer

Main

Switchin
g Device

Vacuum
Tube

Transistor

Integrat
ed
Circuit(I
C)

Large Scale
Integration(L
SI) & VLSI

Component
Size

6000
circuits/cubic

foot

10000
circuits/cubic

foot

10 millions
circuits/cu

bic foot

Over 500
billion

circuits/cubic
foot

Number of
instructions/se
c.

250

30,000

2,00,000

80 Millions

Meantime
between
failure

Hour

Days

Weeks

Months

Internal
memory
capacity

4000
characters

30000
characters

5,12,000
characters

Over 4
million
character
s

1.4 Classification of Computers

All the modern computers are broadly classified into the following three categories.

a) Analog Computer.

b) Digital Computer and

c) Hybrid Computer.

Analog computers

 Are mostly used in industries in process control activities.

 These computers work on analog data such as variation in temperature, pressure,

speed, voltage etc.

 They are not general purpose computers; rather they are specific to a particular

application area. Therefore the cost of such computer varies from application to

application depending on the complexity.

 The uses of such computers are very limited.

Digital computers

 These computers are general purpose computers, which work on digital / binary data.

 The speed and accuracy with which these computers work are very high.

 Digital computers are also having several ranges from super computers to personal

computers.

Hybrid computers

 Practically Hybrid computer are used to control the entire process.

 The analog feature of such computer enables it to measure the physical quantities

such a temperature, pressure, voltage level etc. and convert them to digital data.

 These data are then processed by the computer by using its digital data processing

capability.

 The output from this computer may be taken in a paper as hardcopy, may be seen on

a display device or may be converted into analog form to automatically control various

processes.

Digital computers

Digital computers are classified into the following four categories:

o Super Computers.

o Mainframe Computers.

o Mini Computers.
o Micro Computer

Super computers

 These computers are specifically designed to maximize the processing of floating point

instructions.

 This is possible because of parallel processing technique which implements multiple

processors to work in parallel manner.

 Such computers are very expensive and used in very high-end numerical processing,

geographical information system, etc.

 Some of the popular super computers are Cray, Param, Anupam etc.

 The speed of processing of super computers are measured in GFLOPS i.e., Giga

Floating Point Operations Per Second.

 These computers used their own operating system and programming language and

hence vary from computer to computer.

Mainframe computers

These computers are intended for substantial high volume data processing.

These computers are characterized by–

• Large primary memory.

• Substantial processing capabilities. (MIPS)

• Substantial amount of peripheral devices that can be attached.

• A high data communication capability i.e. ability to connect thousands of terminals.

• Wide variety of memory size and terminal support option.

• Ability to handle large type computer application.

Application of Mainframe Computer

• space research,

• university connectivity,

• Wide area network (WAN) implementation etc.

Specification of mainframe computers.

• Processing speed – 30 to 100 million instruction per second (MIPS)

• Word length – More than 64 bits.

• I/O device –Wide range of peripheral devices.

• Internal Storage – More than 1 GB.

Mini Computers

• Fairly large primary memory.

• Medium scale processing capability i.e., lesser than mainframe but higher than

personal computers.

• Can connect up to 500 terminals on LAN.

• Supports wide range of application areas.

• Affordable, unlike mainframe computers by small business organization.

The application of mini computers

• The field of engineering and scientific organizations,

• Educational Institutes,

• Universities,

• Small/medium business organizations.

These computers are mainly used for medium or large volume data processing activity.

Specification of mini computer

• Processing speed – 10 to 30 MIPS.

• Word length – 32 bits.

• I/O device – Wide range of I/O devices can be connect.

• Internal storage – 66 MB to 512 MB.

Micro computers

This is the smallest and least expensive computers are or personal computers

popularly known as PC.

Typical features.

• These computers are portable.

• They require minimum power.

• Processing power is appropriate for handling most of the tasks.

• Memory capacity is sufficient to handle most of the tasks.

• Ease of use and support to various types of operating systems and application

softwares.

• Affordable price tag.

• These micro computers are further classified into three categories i.e., PC, PC-XT

and PC-AT.

Typical Specifications of PC

• Processor – I 8086 / I 8088 microprocessor.

• Memory – 640 KB of RAM

• Two 360 K Floppy Disk drive.

• Numerical Processor – I 8087.

• System bus –8 bit data bus & 16 bit address bus.

• Clock speed – 8 MHz

Personal Computer

• A PC-XT or Personal Computer with extended technology is an Up gradation of the

PC. It is having all the features discussed above. Apart from these the concept of

secondary memory / mass storage in the form of hard disk drive, was introduced for

the first time.

• The present days PC are PC-AT or personal computer with advanced technology.

Features of PC-AT

• Processor –I 80386 / 80486 / Pentium.

• Memory – 2 MB to 512 MB.

• Floppy disk drive 1.44 MB

• Hard disk drive 1.2 MB to 80 GB.

• System bus–32 bit to 64 bit.

• Clock speed–Up to 3 GHz

• Operating System –MS-DOS, Windows, UNIX, Linux etc.

1.5 Basic Organization of Computer (Functional Block diagram), Input

Devices, CPU & Output Devices.

A digital computer is considered to be a calculating device that can perform arithmetic

operations at enormous speed. It is defined as a device that operates upon information/data.

To be able to process data the computer is made of various functional units to perform its

specified task.

Block Diagram of Computer

Input Device:

Computers need to receive data and instruction in order to solve any problem.

Therefore, we need to input the data and instructions into the computers. The input unit

consists of one or more input devices. Keyboard is the one of the most commonly used input

device. Other commonly used input devices are the Mouse, Scanner, Microphone etc. All

the input devices perform the following functions.

• Accept the data and instructions from the outside world.

• Convert it to a form that the computer can understand.

• Supply the converted data to the computer system for further processing.

Central Processing Unit:

The Control Unit (CU) and Arithmetic Logic Unit (ALU) of the computer are together

known as the Central Processing Unit (CPU). The CPU is like brain performs the following

functions:

 It performs all calculations.

 It takes all decisions.

 It controls all units of the computer.

Arithmetic Logical Unit:

 All calculations are performed in the Arithmetic Logic Unit (ALU) of the computer. It

also does comparison and takes decision. The ALU can perform basic operations

such as addition, subtraction, multiplication, division, etc and does logic operations

viz, >, <, =, ‗etc. Whenever calculations are required, the control unit transfers the

data from storage unit to ALU once the computations are done, the results are

transferred to the storage unit by the control unit and then it is send to the output unit

for displaying results.

Control Unit:

 It controls all other units in the computer. The control unit instructs the input unit,

where to store the data after receiving it from the user. It controls the flow of data and

instructions from the storage unit to ALU. It also controls the flow of results from the

ALU to the storage unit.

 The control unit is generally referred as the central nervous system of the computer

that control and synchronizes it‘s working.

Output Device:

 The output unit of a computer provides the information and results of a computation to

outside world. Printers, Visual Display Unit (VDU) are the commonly used output

devices. Other commonly used output devices are Speaker, Headphone, and

Projector etc.

Storage Unit:

The storage unit of the computer holds data and instructions that are entered through

the input unit, before they are processed. It preserves the intermediate and final results

before these are sent to the output devices. It also saves the data for the later use. The

various storage devices of a computer system are divided into two categories.

a) Primary Storage: Stores and provides very fast. This memory is generally used to hold the
program being currently executed in the computer, the data being received from the input
unit, the intermediate and final results of the program. The primary memory is temporary in
nature. The data is lost, when the computer is switched off. In order to store the data
permanently, the data has to be transferred to the secondary memory. The cost of the
primary storage is more compared to the secondary storage. Therefore, most computers
shave limited primary storage capacity.

b) Secondary Storage: Secondary storage is used like an archive. It stores several

programs, documents, data bases etc. The programs that you run on the computer are first

transferred to the primary memory before it is actually run. Whenever the results are

saved, again they get stored in the secondary memory. The secondary memory is slower

and cheaper than the primary memory. Some of the commonly used secondary memory

devices are Hard disk, CD, etc.,

Memory Size:

 All digital computers use the binary system, i.e. 0‘s and 1‘s. Each character or a
number is represented by an 8-bit code.

 The set of 8 bits is called a byte. A character occupies 1-byte space. A numeric

occupies 2- byte space. Byte is the space occupied in the memory.

 The size of the primary storage is specified in KB (Kilobytes) or MB (Megabyte). One

KB is equal to 1024 bytes and one MB is equal to 1000KB. The size of the primary

storage in a typical PC usually starts at 16MB. PCs having 32 MB, 48MB, 128 MB,

256MB memory are quite common.

1.6 Computer Memory and Classification of Memory
 Computer memory is a generic term for all of the different types of data storage

technology that a computer may use, including RAM, ROM, and flash memory.

 Some types of computer memory are designed to be very fast, meaning that the

central processing unit (CPU) can access data stored there very quickly. Other types

are designed to be very low cost, so that large amounts of data can be stored there

economically.

 Another way that computer memory can vary is that some types are non-volatile,

which means they can store data on a long term basis even when there is no power.

And some types are volatile, which are often faster, but which lose all the data stored

on them as soon as the power is switched off.

 A computer system is built using a combination of these types of computer memory,

and the exact configuration can be optimized to produce the maximum data

processing speed or the minimum cost, or some compromise between the two.

Types of Computer Memory: Primary and Secondary

 Although many types of memory in a computer exist, the most basic distinction is

between primary memory, often called system memory, and secondary memory,

which is more commonly called storage.

 The key difference between primary and secondary memory is speed of access.

 Primary memory includes ROM and RAM, and is located close to the CPU on the

computer motherboard, enabling the CPU to read data from primary memory very

quickly indeed. It is used to store data that the CPU needs imminently so that it does

not have to wait for it to be delivered.

 Secondary memory by contrast, is usually physically located within a separate storage

device, such as a hard disk drive or solid state drive (SSD), which is connected to the

computer system either directly or over a network. The cost per gigabyte of secondary

memory is much lower, but the read and write speeds are significantly slower.

 Over several periods of computer evolution, a wide of array of computer memory types

has been deployed, each with its own strengths and weaknesses.

Primary Memory Types: RAM and ROM

There are two key types of primary memory:

 RAM, or random access memory

 ROM, or read-only memory

Let's look in-depth at both types of memory.

1) RAM Computer Memory

The acronym RAM stems from the fact that data stored in random access memory can be
accessed– as the name suggests – in any random order. Or, put another way, any random bit
of data can be accessed just as quickly as any other bit.

The most important things to understand about RAM are that RAM memory is very fast,

it can be written to as well as read, it is volatile (so all data stored in RAM memory is lost

when it loses power) and, finally, it is very expensive compared to all types of secondary

memory in terms of cost per gigabyte. It is because of the relative high cost of RAM

compared to secondary memory types that most computer systems use both primary and

secondary memory.

Data that is required for imminent processing is moved to RAM where it can be

accessed and modified very quickly, so that the CPU is not kept waiting. When the data is no

longer required it is shunted out to slower but cheaper secondary memory, and the RAM

space that has been freed up is filled with the next chunk of data that is about to be used.

Types of RAM

DRAM: DRAM stands for Dynamic RAM, and it is the most common type of RAM used in

computers. The oldest type is known as single data rate (SDR) DRAM, but newer computers

use faster dual data rate (DDR) DRAM. DDR comes in several versions including DDR2 ,

DDR3, and DDR4, which offer better performance and are more energy efficient than DDR.

However different versions are incompatible, so it is not possible to mix DDR2 with DDR3

DRAM in a computer system. DRAM consists of a transistor and a capacitor in each cell.

SRAM: SRAM stands for Static RAM, and it is a particular type of RAM which is faster than
DRAM, but more expensive and bulker, having six transistors in each cell. For those reasons
SRAM is generally only used as a data cache within a CPU itself or as RAM in very high-end
server systems. A small SRAM cache of the most imminently-needed data can result in
significant speed improvements in a system

The key differences between DRAM and SRAM are that SRAM is faster than DRAM -
perhaps two to three times faster - but more expensive and bulkier. SRAM is usually available
in megabytes, while DRAM is purchased in gigabytes.

DRAM uses more energy than SRAM because it constantly needs to be refreshed to
maintain data integrity, while SRAM - though volatile – does not need constant refreshing
when it is powered up.

2) ROM Computer Memory

ROM stands for read-only memory, and the name stems from the fact that while data can be
read from this type of computer memory, data cannot normally be written to it. It is a very fast
type of computer memory which is usually installed close to the CPU on the motherboard.

ROM is a type of non-volatile memory, which means that the data stored in ROM persists in
the memory even when it receives no power – for example when the computer is turned off. In
that sense it is similar to secondary memory, which is used for long term storage.

When a computer is turned on, the CPU can begin reading information stored in ROM
without the need for drivers or other complex software to help it communicate. The ROM
usually contains "bootstrap code" which is the basic set of instructions a computer needs to
carry out to become aware of the operating system stored in secondary memory, and to load
parts of the operating system into primary memory so that it can start up and become ready to
use.

ROM is also used in simpler electronic devices to store firmware which runs as soon as the

device is switched on.

Types of ROM

ROM is available in several different types, including PROM, EPROM, and EEPROM.

PROM: PROM stands for Programmable Read-Only Memory, and it is different from true ROM
in that while a ROM is programmed (i.e. has data written to it) during the manufacturing
process, a PROM is manufactured in an empty state and then programmed later using a
PROM programmer or burner.

EPROM: EPROM stands for Erasable Programmable Read-Only Memory, and as the name
suggests, data stored in an EPROM can be erased and the EPROM reprogrammed. Erasing
an EPROM involves removing it from the computer and exposing it to ultraviolet light before re-
burning it.

EEPROM: EEPROM stands for Electrically Erasable Programmable Read-Only Memory, and

the distinction between EPROM and EEPROM is that the latter can be erased and written to

by the computer system it is installed in. In that sense EEPROM is not strictly read-only.

However in many cases the write process is slow, so it is normally only done to update

program code such as firmware or BIOS code on an occasional basis.

Secondary Memory

We know that processor memory, also known as primary memory, is expensive as well as

limited. The faster primary memory is also volatile. If we need to store large amount of data or

programs permanently, we need a cheaper and permanent memory. Such memory is called

secondary memory. Here we will discuss secondary memory devices that can be used to

store large amount of data, audio, video and multimedia files.

Characteristics of Secondary Memory

These are some characteristics of secondary memory, which distinguish it from primary
memory

 It is non-volatile, i.e. it retains data when power is switched off

 It is large capacities to the tune of terabytes

 It is cheaper as compared to primary memory

Depending on whether secondary memory device is part of CPU or not, there are two types

of secondary memory – fixed and removable.

Let us look at some of the secondary memory devices available.

Hard Disk Drive

Hard disk drive is made up of a series of circular disks called platters arranged one over the
other almost ½ inches apart around a spindle. Disks are made of non-magnetic material like
aluminum alloy and coated with 10-20 nm of magnetic material.

Standard diameter of these disks is 14 inches and they rotate with speeds varying from 4200
rpm (rotations per minute) for personal computers to 15000 rpm for servers. Data is stored by
magnetizing or demagnetizing the magnetic coating. A magnetic reader arm is used to read
data from and write data to the disks. A typical modern HDD has capacity in terabytes (TB).

CD Drive

CD stands for Compact Disk. CDs are circular disks that use optical rays, usually lasers, to

read and write data. They are very cheap as you can get 700 MB of storage space for less

than a dollar. CDs are inserted in CD drives built into CPU cabinet. They are portable as you

can eject the drive, remove the CD and carry it with you. There are three types of CDs −

 CD-ROM (Compact Disk – Read Only Memory) − The data on these CDs are
recorded by

the manufacturer. Proprietary Software, audio or video are released on CD-ROMs.

 CD-R (Compact Disk – Recordable) − Data can be written by the user once on the

CD-R. It cannot be deleted or modified later.

 CD-RW (Compact Disk – Rewritable) − Data can be written and deleted on these

optical disks again and again.

DVD Drive

DVD stands for Digital Video Display. DVD are optical devices that can store 15 times the data
held by CDs. They are usually used to store rich multimedia files that need high storage
capacity. DVDs also come in three varieties – read only, recordable and rewritable.

Pen Drive

Pen drive is a portable memory device that uses solid state memory rather than magnetic

fields or lasers to record data. It uses a technology similar to RAM, except that it is

nonvolatile. It is also called USB drive, key drive or flash memory.

Blu Ray Disk

Blu Ray Disk (BD) is an optical storage media used to store high definition (HD) video and

other multimedia filed. BD uses shorter wavelength laser as compared to CD/DVD. This

enables writing arm to focus more tightly on the disk and hence pack in more data. BDs can

store up to 128 GB data.

Solved Questions

Short Answer Type Questions.

Q.1 Outline the key features of 1st Generation Computer in brief.(2019-Winter)

Ans. The period of first generation was from 1946-1959. The computers of first

generation used vacuum tubes as the basic components for memory and circuitry

for CPU (Central Processing Unit). These tubes, like electric bulbs, produced a lot

of heat and the installations used to fuse frequently. Therefore, they were very

expensive and only large organizations were able to afford it. In this generation,

mainly batch processing operating system was used. Punch cards, paper tape,

and magnetic tape was used as input and output devices. The computers in this

generation used machine code as the programming language.

Q.2 What is CPU?(2018-Summer)

Ans. A central processing unit (CPU), also called a central processor, main processor

or just processor, is the electronic circuitry within a computer that executes

instructions that make up a computer program. The CPU performs basic

arithmetic, logic, controlling, and input/output (I/O) operations specified by the

instructions in the program.

Q.3 What is ALU?(2014-Winter)

Ans. Stands for "Arithmetic Logic Unit." An ALU is an integrated circuit within a CPU or

GPU that performs arithmetic and logic operations. Arithmetic instructions include

addition, subtraction, and shifting operations, while logic instructions include

boolean comparisons, such as AND, OR, XOR, and NOT operations.

Q.4 Name three input devices used in PC.(2016-Summer)

Ans. The three input devices used in PC are Keyboard, Mouse and Scanner.

Long Answer Type Questions.

Q.1 Discuss about the generation of computers? Explain the key features of computers of
each generation?(2013-Winter)

Ans. A computer is an electronic device that manipulates information or data. It has the

ability to store, retrieve, and process data.

Nowadays, a computer can be used to type documents, send email, play games,

and browse the Web. It can also be used to edit or create spreadsheets,

presentations, and even videos. But the evolution of this complex system started

around 1940 with the first Generation of Computer and evolving ever since.

There are five generations of computers.

FIRST GENERATION

Features:

 1946-1959 is the period of first generation computer.

 J.P.Eckert and J.W.Mauchy invented the first successful electronic computer
called ENIAC, ENIAC stands for ―Electronic Numeric Integrated and Calculator‖.

 Few Examples are: ENIAC, EDVAC, UNIVAC, etc.

Advantages:

 It made use of vacuum tubes which are the only electronic component available
during those days.

 These computers could calculate in milliseconds.

Disadvantages:

 These were very big in size, weight was about 30 tones.

 These computers were based on vacuum tubes.

 These computers were very costly.

SECOND GENERATION

Features:

 1959-1965 is the period of second-generation computer.

 Second generation computers were based on Transistor instead of vacuum tubes.

 Few Examples are: Honeywell 400, IBM 7094, etc.

Advantages:

 Due to the presence of transistors instead of vacuum tubes, the size of electron
component decreased. This resulted in reducing the size of a computer as
compared to first generation computers.

 Less energy and not produce as much heat as the first generation.

 Assembly language and punch cards were used for input.

Disadvantages:
 A cooling system was required.

 Constant maintenance was required.

 Only used for specific purposes.

THIRD GENERATION
Features:

 1965-1971 is the period of third generation computer.

 These computers were based on Integrated circuits.

 IC was invented by Robert Noyce and Jack Kilby In 1958-1959.

 IC was a single component containing number of transistors.

 Few Examples are: PDP-8, PDP-11, ICL 2900, etc.

Advantages:
 These computers were cheaper as compared to second-generation computers.

 They were fast and reliable.

 Use of IC in the computer provides the small size of the computer.

Disadvantages:
 IC chips are difficult to maintain.

 The highly sophisticated technology required for the manufacturing of IC chips.

 Air conditioning is required.
FOURTH GENERATION

Features:

 1971-1980 is the period of fourth generation computer.

 This technology is based on Microprocessor.

 A microprocessor is used in a computer for any logical and arithmetic function to
be performed in any program.

 Graphics User Interface (GUI) technology was exploited to offer more comfort to
users.

 Few Examples are: IBM 4341, DEC 10, STAR 1000, etc.
Advantages:

 Fastest in computation and size get reduced as compared to the previous
generation of computer.

 Heat generated is negligible.

 Small in size as compared to previous generation computers.
Disadvantages:

 The Microprocessor design and fabrication are very complex.

 Air conditioning is required in many cases due to the presence of ICs.

 Advance technology is required to make the ICs.
FIFTH GENERATION

Features:

 The period of the fifth generation in 1980-onwards.

 This generation is based on artificial intelligence.

 The aim of the fifth generation is to make a device which could respond to natural
language input and are capable of learning and self-organization.

 This generation is based on ULSI (Ultra Large Scale Integration) technology
resulting in the production of microprocessor chips having ten million electronic
components.

 Few Examples are: Desktop, Laptop, etc.

Advantages:

 It is more reliable and works faster.

 It is available in different sizes and unique features.

 It provides computers with more user-friendly interfaces with multimedia features.

Disadvantages:

 They need very low-level languages.

 They may make the human brains dull and doomed.

Q.2 Discuss about the various input devices used in PC platform?(2013-Summer)

Ans. Following are some of the important input devices which are used in a

computer −

Keyboard

Keyboard is the most common and very popular input device which helps to input data

to the computer. The layout of the keyboard is like that of traditional typewriter, although

there are some additional keys provided for performing additional functions.

Keyboards are of two sizes 84 keys or 101/102 keys, but now keyboards with 104 keys

or 108 keys are also available for Windows and Internet.

Mouse

Mouse is the most popular pointing device. It is a very famous cursor-control device

having a small palm size box with a round ball at its base, which senses the movement of

the mouse and sends corresponding signals to the CPU when the mouse buttons are

pressed.

Generally, it has two buttons called the left and the right button and a wheel is present

between the buttons. A mouse can be used to control the position of the cursor on the

screen, but it cannot be used to enter text into the computer.

Joystick

Joystick is also a pointing device, which is used to move the cursor position on a

monitor screen. It is a stick having a spherical ball at its both lower and upper ends. The

lower spherical ball moves in a socket. The joystick can be moved in all four directions.

Joystick

The function of the joystick is similar to that of a mouse. It is mainly used in Computer

Aided Designing (CAD) and playing computer games.

Light Pen

Light pen is a pointing device similar to a pen. It is used to select a displayed menu item or
draw pictures on the monitor screen. It consists of a photocell and an optical system
placed in a small tube.
When the tip of a light pen is moved over the monitor screen and the pen button is
pressed, its photocell sensing element detects the screen location and sends the
corresponding signal to the CPU.

Track Ball

Track ball is an input device that is mostly used in notebook or laptop computer, instead

of a mouse. This is a ball which is half inserted and by moving fingers on the ball, the

pointer can be moved.

Since the whole device is not moved, a track ball requires less space than a mouse. A

track ball comes in various shapes like a ball, a button, or a square.

Scanner

Scanner is an input device, which works more like a photocopy machine. It is used when
some information is available on paper and it is to be transferred to the hard disk of the
computer for further manipulation.

Scanner captures images from the source which are then converted into a digital form
that can be stored on the disk. These images can be edited before they are printed.

Digitizer

Digitizer is an input device which converts analog information into digital form. Digitizer
can convert a signal from the television or camera into a series of numbers that could be
stored in a computer. They can be used by the computer to create a picture of whatever
the camera had been pointed at.

Digitizer is also known as Tablet or Graphics Tablet as it converts graphics and pictorial
data into binary inputs. A graphic tablet as digitizer is used for fine works of drawing and
image manipulation applications.

Microphone

Microphone is an input device to input sound that is then stored in a digital form.

The microphone is used for various applications such as adding sound to a multimedia

presentation or for mixing music.

Magnetic Ink Card Reader (MICR)

MICR input device is generally used in banks as there are large number of cheques to be
processed every day. The bank's code number and cheque number are printed on the
cheques with a special type of ink that contains particles of magnetic material that are
machine readable.

This reading process is called Magnetic Ink Character Recognition (MICR). The main
advantages of MICR is that it is fast and less error prone.

Optical Character Reader (OCR)

OCR is an input device used to read a printed text.

OCR scans the text optically, character by character, converts them into a machine

readable code, and stores the text on the system memory.

Bar Code Readers

Bar Code Reader is a device used for reading bar coded data (data in the form of light

and dark lines). Bar coded data is generally used in labelling goods, numbering the

books, etc. It may be a handheld scanner or may be embedded in a stationary scanner.

Bar Code Reader scans a bar code image, converts it into an alphanumeric value, which

is then fed to the computer that the bar code reader is connected to.

Optical Mark Reader (OMR)

OMR is a special type of optical scanner used to recognize the type of mark made by pen

or pencil. It is used where one out of a few alternatives is to be selected and marked.

It is specially used for checking the answer sheets of examinations having multiple

choice questions.

Short Answer Type Questions.

EXERCISE

Q.1 Outline the key features of 4th generation computer in brief.

Q.2 Differentiate between analog computer and digital computer.

Q.3 Define hybrid computer.

Q.4 Differentiate between data and information?

Q.5 Differentiate between softcopy and hardcopy output?

Q.6 Define Auxiliary memory used in PC.

Q.7 Define primary memory used in PC.

Q.8 Define memory hierarchy. State the different memory present in the different levels.

(2015-Winter, 2013-Winter)

Q.9 Define a cache memory.

Q.10 What is an OMR?

Q.11 What is a MICR?(2014-Winter)

Q.12 Define Hardcopy output and Softcopy output from a PC.

Q.13 Differentiate between volatile and non-volatile computer memory.

Q.14 What are the different types of plotters used in PC?

Long Answer Type Questions.

Q.1 Discuss about the various output devices used in a PC platform?

Q.2 What is classification of computer? Compare and contrast the features of different

classes of computers? (2013-Winter)

Q.3 Discuss about the evolution of computers? Give suitable examples of various

computers?

Q.4 What is memory hierarchy? Explain the main features of the various types of

memory present at different levels of this hierarchy? (2016-Winter)

Q.5 Differentiate between primary memory and secondary memory used in PC. Give
proper example to substantiate your answer? (2017-Winter)

CHAPTER – 2: COMPUTER SOFTWARE

2.1 Software concept

Software is a program which helps the human user to give instruction to computer
hardware.

Types of Software

• Systems software

• Application software

2.1.1 System software

 System Software is a set of programs that manage the resources of a computer
system.

 System Software is a collection of system programs that perform a variety of functions

such as -

o File Editing

o Resource Accounting

o I/O Management

o Storage, Memory Management access

 System Software can be broadly classified into three types as:

o System control programs

o System support programs

o System development programs

 System control programs

o controls the execution of programs
o manage the storage & processing resources of the computer

o perform other management & monitoring function

o The most important of these programs is the operating system,

DBMS & communication monitors.

 System support programs

o Provide routine service functions to the other computer programs

& computer users:

 E.g. Utilities, libraries, performance monitors & job accounting.

 System development programs

o Assists in the creation of application

o Programs. e.g., language translators such as BASIC interpreter &

application generators.

2.1.2 Application software
 Application software, or app for short, is software that performs specific tasks for an

end- user.

 Effectively, if the user is interacting directly with a piece of software it is application
software. For example, Microsoft Word or Excel is application software, as are common
web browsers such as Firefox or Google Chrome.

 It also includes the category of mobile apps, including communication apps such as
WhatsApp or games such as Candy Crush Saga. There are also app versions of
common services such as those providing weather or transport information or apps for
customers to interact with companies.

 Application software is distinct from system software, which refers to the software that

actually keeps the systems running such as the operating system, computational

science software, game engines, industrial automation, and software as service

applications.

 Instead of interacting with the user, the system software interacts with other software

or hardware.

2.2 Overview of Operating System

 An operating system (OS) is software that manages computer hardware resources

and provides common services for computer programs. The operating system is an

essential component of the system software in a computer system.

 Application programs usually require an operating system to function. Time-sharing

operating systems schedule tasks for efficient use of the system and may also include

accounting software for cost allocation of processor time, mass storage, printing, and

other resources.

 For hardware functions such as input and output and memory allocation, the operating

system acts as an intermediary between programs and the computer hardware,

although the application code is usually executed directly by the hardware and will

frequently make a system call to an OS function or be interrupted by it. Operating

systems can be found on almost any device that contains a computer—from cellular

phones and video game consoles to supercomputers and web servers.

 Examples of popular modern operating systems include Android, BSD, iOS, Linux, OS

X, QNX, Microsoft Windows, Windows Phone, and IBM z/OS. All these, except

Windows, Windows Phone and z/OS, share roots in UNIX.

Types of operating systems

o Real-time

o Multi-user
o Multi-tasking vs. single-tasking

o Distributed

2.2.1 Objectives and Functions of O.S

OS typically provides services in the following areas:

1. Program development - The OS provides a variety of facilities and services, such as

editors and debuggers, to assist the programmer in creating programs.

2. Program execution - A number of steps need to be performed to execute a program.

Instructions and data must be loaded into main memory, I/O devices and files must be

initialized, and other resources must be prepared. The OS handles these scheduling

duties for the user.

3. Access to I/O devices - Each I/O device requires its own peculiar set of instructions

or control signals for operation. The OS provides a uniform interface that hides these

details so that programmers can access such devices using simple reads and writes.

4. Controlled access to files - For file access, the OS must reflect a detailed

understanding of not only the nature of the I/O device (disk drive, tape drive) but also

the structure of the data contained in the files on the storage medium. In the case of a

system with multiple users, the OS may provide protection mechanisms to control

access to the files.

5. System access - For shared or public systems, the OS controls access to the system

as a whole and to specific system resources. The access function must provide

protection of resources and data from unauthorized users and must resolve conflicts

for resource contention.

6. Error detection and response - A variety of errors can occur while a computer system is

running. These include internal and external hardware errors, such as a memory error,

or a device failure or malfunction; and various software errors, such as division by

zero, attempt to access forbidden memory location etc. In each case, the OS must

provide a response that clears the error condition with the least impact on running

applications. The response may range from ending the program that caused the error,

to retrying the operation, to simply reporting the error to the application.

7. Accounting - A good OS will collect usage statistics for various resources and monitor

performance parameters such as response time.

The major functions of Operating System are it acts as –

 The Resource Manager for Computer.

 The Memory Manager for computer.

 The Device Manager for computer.

 The User manager.

2.2.2 Types of Operating System: Batch Processing, Multiprogramming

&Time Sharing OS

Following are some major types of Operating system.

Real-time operating system

A real-time operating system is a multitasking operating system that aims at executing

real-time applications. Real-time operating systems often use specialized scheduling

algorithms so that they can achieve a deterministic nature of behavior. The main objective of

real-time operating systems is their quick and predictable response to events. They have an

event-driven or time sharing design and often aspects of both. An event-driven system

switches between tasks based on their priorities or external events while time-sharing

operating systems switch tasks based on clock interrupts.

Multi-user operating system

A multi-user operating system allows multiple users to access a computer system at

the same time. Time-sharing systems and Internet servers can be classified as multi-user

systems as they enable multiple-user access to a computer through the sharing of time.

Single-user operating systems have only one user but may allow multiple programs to run at

the same time.

Multi-tasking vs. single-tasking Operating System

A multi-tasking operating system allows more than one program to be running at the

same time, from the point of view of human time scales. A single-tasking system has only

one running program.

Distributed Operating system

A distributed operating system manages a group of independent computers and makes

them appear to be a single computer. The development of networked computers that could

be linked and communicate with each other gave rise to distributed computing. Distributed

computations are carried out on more than system.

Batch Processing

Batch processing is the execution of a series of programs ("jobs") on a computer

without manual intervention. Jobs are set up so they can be run to completion without human

interaction. All input parameters are predefined through scripts, command-line arguments,

control files, or job control language. This is in contrast to "online" or interactive programs

which prompt the user for such input. A program takes a set of data files as input, processes

the data, and produces a set of output data files. This operating environment is termed as

"batch processing" because the input data are collected into batches or sets of records and

each batch is processed as a unit.

Multiprogramming

Multiprogramming is a rudimentary form of parallel processing in which several

programs are run at the same time on a uniprocessor. Since there is only one processor,

there can be no true simultaneous execution of different programs. Instead, the operating

system executes part of one program, then part of another, and so on. To the user it appears

that all programs are executing at the same time.

Time Sharing OS

In computing, time-sharing is the sharing of a computing resource among many users

by means of multiprogramming and multi-tasking. Its introduction in the1960s, and

emergence as the prominent model of computing in the 1970s, represented a major

technological shift in the history of computing. By allowing a large number of users to interact

concurrently with a single computer, time-sharing dramatically lowered the cost of providing

computing capability, made it possible for individuals and organizations to use a computer

without owning one, and promoted the interactive use of computers and the development of

new interactive applications.

2.2.3 Features of DOS, Windows and UNIX

Features of DOS
The operating system is a system software used for management of computer hardware and

application software. It is an interactive interface of computer.MS-DOS is a very popular
operating system for PC, and it is replaced by its extension Windows operating system. In the
Windows environment, DOS is also Boss because many utilities programs of MS-DOS are
used in trouble shooting of Windows Operating system.

MS-DOS

MS-DOS stands for Microsoft Disk Operating System. Tim Paterson developed this

operating system in 1980. The IBM (International Business Machine) released first PC

(Personal Computer) in 1981. MS-DOS version 1.0 was used as operating system in IBM-PC

and become talk of town in overnight. The father of PC Operating System is Gary Kildall of

Digital Research. He had his Ph.D in computer and designed more successful operating

System called CP/ M. The selling of CP / M is more than 600,000 copies proves its

popularity. The Microsoft Disk Operating System or MS- DOS was based on QDOS, the

Quick and Dirty Operating System written by Tim Peterson of Seattle Computer Products, for

their prototype Intel 8086 based computer. QDOS was based on Gray Kildall‘s CF/M.

Paterson had bought a CP/ M manual and used it as the basis to write his operating system

six weeks, QBOS was different enough from CP / M. MS-DOS version 7.0 is lunched in 1997

which is a hidden with Window95/98 OS.

It has three essential files and many command files. These essential files are: IO.SYS,

MSDOS.SYS, and COMMAND.COM. These files are called system files of MS-DOS.

The DOS is Boss in real sense, because in the age of Windows operating system,

hardware utilities are dependent on the DOS.

The heart of MS-DOS:

 IO.SYS: This let DOS communicate with the hardware through the BIOS (Basic Input /

Output System).

 MSDOS.SYS: This is a DOS kernel.

 COMMAND.COM: This is where all the DOS commands are stored and interpreted.

 COFIG.SYS: Hardware configuration information is stored here.

 AUTOEXEC.BAT: All the programs that are supposed to run at startup are called here.

 Booting: The booting is a process of loading system files into main memory (RAM).

There are two types of booting: cold booting and warm booting.

Windows and UNIX

It is an operating system, extension of MS-DOS with user friendly GUI and several

facilities to control memory, hardware, text, graphics, audio, video, internet connection etc.

Version

Comments

Windows 1.0

This operating system with user interface is a notification of MSDOS. The nifty mouse is

used to click on desired program to open. It was first called interface manager, but then

changed in to the more appealing Windows. Windows 1.0lanched in November 1985.

Windows 2.0

It was released in 1987 to take advantage of the awesome processing power of the Intel

286processor. The first version of Microsoft Word and Excel are introduced in this version.

Windows 3.0

It was released in May 1990. It came with a prettier 16-colorinterface, and new
technological bells and whistles that let it make better use of the memory. In 1991, Microsoft
brought multimedia support for Windows 3.0, called feature, though, is the active desktop,
which integrates the web browser (internet Explorer), with operating system.

Windows 2000

Its interface is similar to interface for windows 98. It has new security protocol with an

encryption facility to authenticate users logging in to the network. It supports 32 FAT file

system along with NTFC (New Technology File System), making it easier for users to

upgrade for Windows 98. It has quite robustly brid kernel architecture, make it more stable

version.

Windows Me

Later in 2000, Windows Millennium (windows me) Edition was released for the home user.

This was the last version of Windows to be based on Windows 98. Windows Me had always

been regarded as Microsoft‘ sway of keeping users busy while they waited for Windows XP.

Windows XP

Here, XP stands for experience. It bought together the robust Kernel of windows 2000

and all the friendless and multimedia support of Windows Me, and painted on a new face for

it. Apart from the merger of Windows2000 and me, Windows Xp also added new features to

enhance its performance. The first of These Throttling, Usually, Windows likes to do many

things at once, but when memory falls short, it will throttle its memory access, doing fewer at

a time. This shows the system down considerably, but prevents it from crashing.

Windows 7

Windows 7 is an operating system released by Microsoft on October 22, 2009. It follows

the previous (sixth) version of Windows, called Windows Vista.

Like previous versions of Windows, Windows 7 has a graphical user interface (GUI) that

allows you to interact with items on the screen using a keyboard and mouse. However,

Windows 7 is also includes a feature called "Windows Touch" that supports touch screen

input and multi touch functionality

Windows 8

Windows 8 is the latest version of Microsoft's Windows operating system. It was

released on October 26, 2012, and is the first major update to Windows since Windows 7,

which was released over three years earlier.

The goal of the new Windows 8 interface is to function on both traditional desktop PCs,

such as desktop computers and laptops, as well as tablet PCs. Windows 8 supports both

touch screen input as well as traditional input devices, such as a keyboard and mouse.

Windows 10

Windows 10 is a major version of the Microsoft Windows operating system that was

released on July 29, 2015. It is built on the Windows NT kernel and follows Windows 8.

While Windows 10 includes many new features, it also brings back the Start Menu,

which was dropped in Windows 8. The new and improved Start Menu provides quick access

to settings, folders, and programs and also includes tiles from the Windows 8 interface. The

bottom of the Windows 10 Start Menu includes a search bar that allows you to search both

your local PC and the web.

UNIX Operating System

The UNIX (pronounced as YEW-nihks) is a powerful, flexible, multi-user Operating

system with GUI and several utilities. Ken Thompson and Dennis Ritchie wrote Compiler

under UNIX in 1969 at Bell Labs. In 1973, Thompson and Ritchie rewrote the UNIX kernel

using C language. It is based on MULTICS operating system. Its first user was Bell patent

department. XENIX, VENIX, MICRONIX, LINUX, UNIXWARE-7 etc are version of UNIX

operating system.

The UNIX operating system is made up from three parts:

(a) Kernel: It is a hub of operating system dedicated for memory management, file

management and communication within system.

(b) Shell: It is an interface between kernel and users. When a user logs in, the login program

matches the username and password, and then starts shell. The shell is a command line

interpreter (CLI) of UNIX.

(c) Program or command: It is used to accomplish specific tasks. When one command is

terminated, the shell displays prompt % to accept next command for execution.

2.3 Programming Languages

A programming language is a formal constructed language designed to communicate
instructions to a machine, particularly a computer. Programming languages can be used to
create programs to control the behavior of a machine or to express algorithms so that the
computer hardware can run with a proper step by step instruction.

The earliest programming languages preceded the invention of the computer and were

used to direct the behavior of machines such as Jacquard looms and player pianos.
Thousands of different programming languages have been created, mainly in the computer
field, and many more still are being created every year. Many programming languages require
computation to be specified in an imperative form (i.e., as a sequence of operations to
perform), while other languages utilize other forms of program specification such as the
declarative form (i.e. the desired result is specified, not how to achieve it).

The description of a programming language is usually split into the two components of

syntax (form) and semantics (meaning). Some languages are defined by a specification
document (for example, the C programming languages specified by an ISO Standard), while
other languages (such as Perl) have dominant implementation that is treated as a reference.
There are two major types of programming languages I,e. Procedural programming language
and Object Oriented programming language.

Procedural programming

In procedural programming our code is organized into small "procedures" that use and
change our data. In ColdFusion, we write our procedures as either custom tags or functions.
These functions typically take some input, do something, then produce some output. Ideally
your functions would behave as "black boxes ―where input data goes in and output data comes
out.

The key idea here is that our functions have no intrinsic relationship with the data they

operate on. As long as you provide the correct number and type of arguments, the function will
do its work and faithfully return its output.

Sometimes our functions need to access data that is not provided as a parameter, i.e.,

we need access data that is outside the function. Data accessed in this way is considered

"global" or "shared" data.

So in a procedural system our functions use data they are "given" (as parameters) but also

directly access any shared data they need.

Object oriented programming

In object oriented programming, the data and related functions are bundled together into

an "object". Ideally, the data inside an object can only be manipulated by calling the object's

functions. This means that your data is locked away inside your objects and your functions

provide the only means of doing something with that data. In a well-designed object oriented

system objects never access shared or global data, they are only permitted to use the data

they have, or data they are given.

2.4 Compiler, Interpreter

Compiler: It is a program which translates a high level language program into a machine

language program. A compiler is more intelligent than an assembler. It checks all kinds of

limits, ranges, errors etc. But its program run time is more and occupies a larger part of the

memory. It has slow speed. Because a compiler goes through the entire program and then

translates the entire program into machine codes. If a compiler runs on a computer and

produces the machine codes for the same computer then it is known as a self-compiler or

resident compiler. On the other hand, if a compiler runs on a computer and produces the

machine codes for other computer then it is known as a cross compiler.

Interpreter: An interpreter is a program which translates statements of program into

machine code. It translates only one statement of the program at a time. It reads only one

statement of program, translates it and executes it. Then it reads the next statement of the

program again translates it and executes it. In this way it proceeds further till all the

statements are translated and executed. On the other hand, a compiler goes through the

entire program and then translates the entire program into machine codes. A compiler is 5 to

25 times faster than an interpreter. By the compiler, the machine codes are saved

permanently for future reference. On the other hand, the machine codes produced by

interpreter are not saved. An interpreter is a small program as compared to compiler. It

occupies less memory space, so it can be used in a smaller system which has limited

memory space.

2.5 Computer Virus, Different Types of computer virus

A computer virus is a malware program that, when executed, replicates by inserting

copies of itself (possibly modified) into other computer programs, data files, or the boot sector

of the hard drive. When this replication succeeds, the affected areas are then said to be

"infected". Viruses often perform some type of harmful activity on infected hosts, such as

stealing hard disk space or CPU time, accessing private information, corrupting data,

displaying political or humorous messages on the user's screen, spamming their contacts, or

logging their keystrokes. However, not all viruses carry a destructive payload or attempt to

hide themselves—the defining characteristic of viruses is that they are self-replicating

computer programs which install themselves without the user‘s consent.

Virus writers use social engineering and exploit detailed knowledge of security
vulnerabilities to gain access to their hosts' computing resources. The vast majority of viruses
target systems running Microsoft Windows, employing a variety of mechanisms to infect new
hosts, and often using complex anti detection/stealth strategies to evade antivirus software.
Motives for creating viruses can include seeking profit, desire to send a political message,
personal amusement, to demonstrate that a vulnerability exists in software, for sabotage and
denial of service, or simply because they wish to explore artificial life and evolutionary
algorithms.

Computer viruses currently cause billions of dollars worth of economic damage each year,
due to causing systems failure, wasting computer resources, corrupting data, increasing
maintenance costs, etc. In response, free, open source antivirus tools have been developed,
and a multi-billion dollar industry of antivirus software vendors has cropped up, selling virus
protection to users of various operating systems of which Android and Windows are among the
most victimized. Unfortunately, no currently existing antivirus software is able to catchall
computer viruses (especially new ones); computer security researchers are actively searching
for new ways to enable antivirus solutions to more effectively detect emerging viruses, before
they have already become widely distributed.

Different Types of computer virus

There are different types of viruses which can be classified according to their origin,

techniques, types of files they infect, where they hide, the kind of damage they cause, the

type of operating system, or platform they attack. Let us have a look at few of them.

Memory Resident Virus-These viruses fix themselves in the computer memory and get

activated whenever the OS runs and infects all the files that are then opened. Hideout: This

type of virus hides in the RAM and stays there even after the malicious code is executed. It

gets control over the system memory and allocates memory blocks through which it runs its

own code, and executes the code when any function is executed. Target: It can corrupt files

and programs that are opened, closed, copied, renamed, etc. Examples: Randex, CMJ,

Meve, and MrKlunky, Protection: Install an antivirus program.

Direct Action Viruses-The main purpose of this virus is to replicate and take action when it

is executed. When a specific condition is met, the virus will go into action and infect files in

the directory or folder that are specified in theAUTOEXEC.BAT file path. This batch file is

always located in the root directory of the hard disk and carries out certain operations when

the computer is booted. Find First/Find Next technique is used where the code selects a few

files as its victims. It also infects the external devices like pen drives or hard disks by

copying itself on them. Hideout: The viruses keep changing their location into new files

whenever the code is executed, but are generally found in the hard disk's root directory.

Target: It can corrupt files. Basically, it is a file- infector virus. Examples: Vienna virus.

Protection: Install an antivirus scanner. However, this type of virus has minimal effect on the

computer's performance.

Overwrite Viruses-A virus of this kind is characterized by the fact that it deletes the

information contained in the files that it infects, rendering them partially or totally useless

once they have been infected. Hideout: The virus replaces the file content. However, it does

not change the file size. Examples: Way, Trj.Reboot, Trivial.88.D. Protection: The only way to

clean a file infected by an overwrite virus is to delete the file completely, thus losing the

original content. However, it is very easy to detect this type of virus, as the original program

becomes useless.

Boot Sector Virus-This type of virus affects the boot sector of a hard disk. This is a crucial

part of the disk, in which information of the disk itself is stored along with a program that

makes it possible to boot (start) the computer from the disk. This type of virus is also called

Master Boot Sector Virus or Master Boot Record Virus. Hideout: It hides in the memory until

DOS accesses the floppy disk, and whichever boot data is accessed, the virus infects it.

Examples: Polyboot.B, AntiEXE. Protection: The best way of avoiding boot sector viruses is

to ensure that floppy disks are write-protected. Also, never start your computer with an

unknown floppy disk in the disk drive.

Macro viruses infect files that are created using certain applications or programs that contain

macros, like .doc, .xls, .pps, .mdb, etc. These mini programs make it possible to automate

series of operations so that they are performed as a single action, thereby saving the user

from having to carry them out one by one. These viruses automatically infect the file that

contains macros, and also infects the templates and documents that the file contains. It is

referred to as a type of e-mail virus. Hideout: These hide in documents that are shared via e-

mail or networks. Examples: Relax, Melissa.A, Bablas, O97M/Y2KProtection: The best

protection technique is to avoid opening e- mails from unknown senders. Also, disabling

macros can help to protect your useful data.

Directory viruses (also called Cluster Virus/File System Virus)-It infects the directory of your

computer by changing the path that indicates the location of a file. When you execute a

program file with an extension .EXE or .COM that has been infected by a virus, you are

unknowingly running the virus program, while the original file and program is previously

moved by the virus. Once infected, it becomes impossible to locate the original files. Hideout:

It is usually located in only one location of the disk, but infects the entire program in the

directory. Examples: Dir- 2virusProtection: All you can do is, reinstall all the files from the

backup that are infected after formatting the disk.

Polymorphic viruses encrypt or encode themselves in a different way (using different

algorithms and encryption keys) every time they infect a system. This makes it impossible for

antivirus software to find them using string or signature searches (because they are different

in each encryption). The virus then goes onto creates a large number of copies. Examples:

Elkern, Marburg, Satan Bug and Tuareg, Protection: Install a high-end antivirus as the normal

ones are incapable of detecting this type of virus.

Companion viruses: It can be considered as a type of file infector virus, like resident or

direct action types. They are known as companion viruses because once they get into the

system they 'accompany' the other files that already exist.

In other words, to carry out their infection routines, companion viruses can wait in memory
until a program is run (resident virus), or act immediately by making copies of themselves
(direct action virus).

Hideout: These generally use the same filename and create a different extension of it. For
example: If there is a file "Me.exe", the virus creates another file named "Me.com" and hides in
the new file. When the system calls the filename "Me", the ".com" file gets executed (as ".com"
has higher priority than ".exe"), thus infecting the system. Examples: Stator, Asimov.1539 and
Terrax.1069 Protection: Install an antivirus scanner and also download Firewall.

FAT Virus: The file allocation table (FAT) is the part of a disk used to store all the information

about the location of files, available space, unusable space, etc. Hideout: FAT virus attacks

the FAT section and may damage crucial information. It can be especially dangerous as it

prevents access to certain sections of the disk where important files are stored. Damage

caused can result in loss of information from individual files or even entire directories.

Examples: Link Virus, Protection: Before the virus attacks all the files on the computer, locate

all the files that are actually needed on the hard drive, and then delete the ones that are not

needed. They may be files created by viruses.

Multipartite Virus-These viruses spread in multiple ways possible. It may vary in its action

depending upon the operating system installed and the presence of certain files.

Hideout: In the initial phase, these viruses tend to hide in the memory as the resident viruses

do; then they infect the hard disk. Examples: Invader, Flip and Tequila.

Protection: You need to clean the boot sector and also the disk to get rid of the virus, and

then reload all the data in it. However, ensure that the data is clean.

Web Scripting Virus-Many web pages include complex codes in order to create an interesting

and interactive content. This code is often exploited to bring about certain undesirable

actions. Hideout: The main sources of web scripting viruses are the web browsers or infected

web pages. Examples: JS.Fortnight is a virus that spreads through malicious e-mails.

Protection: Install the Microsoft tool application that is a default feature in Windows 2000,

Windows 7 and Vista. Scan the computer with this application.

Worms: A worm is a program very similar to a virus; it has the ability to self-replicate and can

lead to negative effects on your system. But they can be detected and eliminated by an

antivirus software. Hideout: These generally spread through emails and networks. They do

not infect files or damage them, but they replicate so fast that the entire network may

collapse. Examples: PSWBugbear.B, Lovgate.F, Trile.C, Sobig.D, Mapson. Protection: Install

an updated version of antivirus.

Trojans are another unsavory breed of malicious code are Trojans or Trojan horses, which

unlike viruses, do not reproduce by infecting other files, nor do they self-replicate like worms.

In fact, it is a program which disguises itself as a useful program or application.

Beware of the fact that these viruses copy files in your computer (when their carrier

program is executed) that can damage your data, and even delete it. The attacker can also

program the Trojans in such a manner that the information in our computer is accessible to

them.

Logic Bombs are not considered viruses because they do not replicate. They are not even

programs in their own right, but rather camouflaged segments of other programs. They are

only executed when certain predefined condition is met. Their objective is to destroy data on

the computer once certain condition shave been met. Logic bombs go undetected until

launched, the results can be destructive, and your entire data can be deleted.

2.5.1 Detection and prevention of Virus

Following steps may be taken for Virus Detection and Prevention.

1. Do not open any files attached to an email from an unknown, suspicious or

untrustworthy source.

2. Do not open any files attached to an email unless you know what it is, even if it

appears to come from a dear friend or someone you know. Some viruses can replicate

themselves and spread through email. Better be safe than sorry and confirm that they

really sent it.

3. Delete chain emails and junk email. Do not forward or reply to any to them. These

types of email are considered spam, which is unsolicited, intrusive mail that clogs up

the network.

4. Exercise caution when downloading files from the Internet. Ensure that the source is a

legitimate and a reputable one. Verify that an anti-virus program checks the files on

the download site. If you're uncertain, don't download the file at all.

5. Update your anti-virus software regularly. Thousands of viruses are discovered each

month, so you'll want to be protected.

6. Back up your files on a regular basis. If a virus destroys your files, at least you can

replace them with your back-up copy. You should store your backup copy in a

separate location from your work files, one that is preferably not on your computer.

7. When in doubt, always err on the side of caution and do not open, download, or

execute any files or email attachments. Not executing the files is especially important.

Check with your product vendors for updates which include those for your operating

system web browser, and email. One example is the security site section of Microsoft

located at http://www.microsoft.com/security.

8. Stay away from Bit torrent sites. Some of the more popular ones include Lime wire, Bit

Torrent, Frost wire and Pirate Bay. These are heavily laden with viruses, malware and

spyware. Downloading material from these websites is one of the easiest ways to

become infected. It‘s in your best interest to just avoid these websites completely.

9. Be careful when searching on the internet, the links that come up from your search

engine may contain a virus. Never go to sites that sound suspicious.

10. Due to the popularity of the social networking websites such as MySpace, Face book,

and Twitter, virus makers target them more than any other website. Online gaming and

gambling websites also are high risk websites. It‘s best to avoid these kinds of

websites altogether.

11. If you happen to see a popup message when on the internet about being infected and

to buy their software to protect yourself, do not fall for it! Most of the time these

messages are easy to see as they tend to have bad grammar and spelling errors.

Common names are XP Antivirus, Security Tools, ThinkPoint, Security Shield, Win 7

Security 2011, and similar variations. If do see one of these popup, do not click on

them, immediately shut down your computer. If you click on any part of those windows

you will give the virus permission to install and bypass your antivirus program.

12. If you see any suspicious pop-ups appear on your screen, do not click on them. If you

do, it is very likely you will infect your computer. Instead use the following keyboard

command, which will allow you to close the pop-up, without having the click on it or

infecting yourself. The keyboard command is ALT + F4. If that fails, then shut down

the computer.

http://www.microsoft.com/security

2.6 Application of computers in different Domain

Computer is a device through which you can perform a variety of jobs. You can use your

computer system for different applications by changing the software packages

Uses of Computer at Home

Computer can be used at home in the following ways.

Home Budget

Computer can be used to manage Home Budget. You can easily calculate your expenses

and income. You can list all expenses in one column and income in another column. Then

you can apply any calculation on these columns to plan your home budget. There are also

specialize software that can manage your income and expenses and generate some cool

reports.

Computer Games

An important use of computers at home is playing games. Different types of games are

available. These games are a source of entertainment and recreation. Many games are

available that are specially developed to improve your mental capability and thinking power.

Working from Home

People can manage the office work at home. The owner of a company can check the work of

the employees from home. He can control his office while sitting at home.

Entertainment

People can find entertainment on the internet. They can watch movies, listen to songs, and

watch videos download different stuff. They can also watch live matches on the internet.

Information

People can find any type of information on the internet. Educational and informative websites

are available to download books, tutorials etc. to improve their knowledge and learn new

things.

Chatting & Social Media

People can chat with friends and family on the internet using different software like Skype etc.

One can interact with friends over social media websites like Face book, Twitter & Google

Plus. They can also share photos and videos with friends.

Uses of Computers in Education

CBT are different programs that are supplied on CD-ROM. These programs include text,

graphics and sound. Audio and Video lectures are recorded on the CDs. CBT is a low cost

solution for educating people. You can train a large number of people easily.

Benefits of CBT

Some benefits of CBT are as follows:

1. The students can learn new skills at their own pace. They can easily acquire knowledge
in any available time of their own choice.

2. Training time can be reduced.

3. Training materials are interactive and easy to learn. It encourages students to learn the
topic.

4. Planning and timing problems are reduced or eliminated.

5. The skills can be taught at any time and at any place.

6. It is very cost effective way to train the large number of students.

7. Training videos and audios are available at affordable prices.

Computer Aided Learning (CAL)

Computer aided learning is the process of using information technology to help teaching

and enhance the learning process. The use of computer can reduce the time that is spent on

preparing teaching material. It can also reduce the administrative load of teaching and

research. The use of multimedia projector and PowerPoint presentations has improved the

quality of teaching. It has also helped the learning process.

Distance Learning

Distance learning is a new learning methodology. Computer plays the key role in this

kind of learning. Many institutes are providing distance learning programs. The student does

not need to come to the institute. The institute provides the reading material and the student

attends virtual classroom. In virtual classroom, the teacher delivers lecture at his own

workplace. The student can attend the lecture at home by connecting to a network. The

student can also ask questions to the teacher.

Online Examination

The trend of online examination is becoming popular. Different examination like GRE,

GMAT and SAT are conducted online all over the world. The questions are marked by

computer. It minimizes the chance of mistakes. It also enables to announce the result in time.

Uses of Computers in Business

The use of computer technology in business provides many facilities. Businessmen are

using computers to interact with their customers anywhere in the world. Many business tasks

are performed more quickly and efficiently. Computers also help them to reduce the overall

cost of their business. Computer can be used in business in the following ways.

Marketing

An organization can use computers for marketing their products. Marketing applications

provide information about the products to customers. Computer is also used to manage

distribution system, advertising and selling activities. It can also be used in deciding pricing

strategies. Companies can know more about their customers and their needs and

requirements etc.

Stock Exchange

Stock Exchange is the most important place for businessmen. Many stock exchanges

use computers to conduct bids. The stockbrokers perform all trading activities electronically.

They connect with the computer where brokers match the buyers with sellers. It reduces cost

as no paper or special building is required to conduct these activities.

Uses of computers in Medical

Field Hospital Management

System

Specialized hospital management softwares are used to automate the day today procedures

and operations at hospitals. These tasks may be online appointments, payroll admittance and

discharge records etc.

Patient History

Hospital management systems can store data about patients. Computers are used to

store data about patients, their diseases & symptoms, the medicines that are prescribed.

Patients Monitoring

Monitoring systems are installed in medical wards and Intensive care units to monitoring

patients continuously. These systems can monitor pulse, blood pressure and body

temperature and can alert medical staff about any serious situations.

Life Support Systems
Specialized devices are used to help impaired patients like hearing aids.

Diagnosis Purpose
A variety of software are used to investigate symptoms and prescribed medication

accordingly. Sophisticated systems are used for tests like CT Scan, ECG, and other medical

tests.

Solved Questions

Short Answer Type Questions.

Q.1 Define an operating system. Give examples of three operating system used on PC.
Ans. An Operating System (OS) is an interface between computer user and computer

hardware. An operating system is software which performs all the basic tasks like

file management, memory management, process management, handling input and

output, and controlling peripheral devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System, Windows

Operating System, VMS, OS/400, AIX, z/OS, etc.

Q.2 Define a batch processing system.
Ans. Batch processing is the processing of transactions in a group or batch. No user

interaction is required once batch processing is underway. This differentiates batch

processing from transaction processing, which involves processing transactions

one at a time and requires user interaction.

Q.3 Define a multi programming operating system.
Ans. Multiprogramming is a rudimentary form of parallel processing in which several

programs are run at the same time on a uniprocessor. Instead, the operating

system executes part of one program, then part of another, and so on. To the user

it appears that all programs are executing at the same time.

Q.4 Define a time sharing operating system.
Ans. Time-sharing enables many people, located at various terminals, to use a

particular computer system at the same time. Multitasking or Time-Sharing

Systems is a logical extension of multiprogramming. Processor's time is shared

among multiple users simultaneously is termed as time-sharing.

Long Answer Type Questions

Q.1 Define an operating system. Discuss about the major function of any operating
system. (2013-Winter) (2017-Winter)

Ans.

An operating system is a program on which application programs are executed and acts

as a communication bridge (interface) between the user and the computer hardware.

The main task an operating system carries out is the allocation of resources and

services, such as allocation of: memory, devices, processors and information. The operating

system also includes programs to manage these resources, such as a traffic controller, a

scheduler, memory management module, I/O programs, and a file system.

Functions of an operating System:

Security –

The operating system uses password protection to protect user data and similar other

techniques. It also prevents unauthorized access to programs and user data.

Control over system performance –

Monitors overall system health to help improve performance records the response time

between service requests and system response to have a complete view of the system

health. This can help improve performance by providing important information needed to

troubleshoot problems.

Job accounting –

Operating system Keeps track of time and resources used by various tasks and users,

this information can be used to track resource usage for a particular user or group of user.

Error detecting aids –

Operating system constantly monitors the system to detect errors and avoid the

malfunctioning of computer system.

Coordination between other software and users –

Operating systems also coordinate and assign interpreters, compilers, assemblers and

other software to the various users of the computer systems.

Memory Management –

The operating system manages the Primary Memory or Main Memory. Main memory is

made up of a large array of bytes or words where each byte or word is assigned a certain

address. Main memory is a fast storage and it can be accessed directly by the CPU. For a

program to be executed, it should be first loaded in the main memory. An Operating System

performs the following activities for memory management:

It keeps tracks of primary memory, i.e., which bytes of memory are used by which user

program. The memory addresses that have already been allocated and the memory

addresses of the memory that has not yet been used. In multi programming, the OS decides

the order in which process are granted access to memory, and for how long. It allocates the

memory to a process when the process requests it and deallocates the memory when the

process has terminated or is performing an I/O operation.

Processor Management –

In a multi programming environment, the OS decides the order in which processes have

access to the processor, and how much processing time each process has. This function of

OS is called process scheduling. An Operating System performs the following activities for

processor management.

Keeps tracks of the status of processes. The program which perform this task is known

as traffic controller. Allocates the CPU that is processor to a process. De-allocates processor

when a process is no more required.

Device Management –

An OS manages device communication via their respective drivers. It performs the

following activities for device management. Keeps tracks of all devices connected to system.

Designates a program responsible for every device known as the Input/output controller.

Decides which process gets access to a certain device and for how long. Allocates devices in

an effective and efficient way. Deallocates devices when they are no longer required.

File Management –

A file system is organized into directories for efficient or easy navigation and usage.

These directories may contain other directories and other files. An Operating System carries

out the following file management activities. It keeps track of where information is stored,

user access settings and status of every file and more. These facilities are collectively known

as the file system.

Q.2 What is the difference between Application Software and System Software? (2015-
Winter)

Ans

Sr.
No.

Key

System Software.

Application Software.

1

Definition

System Software is the

type of software which is

the interface between

application software and

system.

On other hand Application Software

is the type of software which runs as

per user request. It runs on the

platform which is provide by system

software.

2

Development

Language

In general System

software are developed in

low level language which

is more compatible with

the system hardware in

order to interact with.

While in case of Application

software high level language is used

for their development as they are

developed as some specific

purpose software.

3

Usage

System software is used

for operating computer

hardware.

On other hand Application software

is used by user to perform specific

task.

4

Installation

System software are

installed on the computer

when operating system is

installed.

On other hand Application software

are installed according to user‘s

requirements.

5

User

interaction

As mentioned in above

points system software

are specific to system

hardware so less or no

user interaction available

in case of system

software.

On other hand in application

software user can interacts with it as

user interface is available in this

case.

6

Dependency

System software can

run independently. It

provides platform for

running application

Software.

On other hand in application

software can‘t run independently.

They can‘t run without the presence

of system software..

7

Examples

Some examples of

system software‘s are

compiler, assembler,

debugger,

driver, etc.

On other hand some examples of

application software‘s are word

processor, web browser, media

player, etc.

Short Answer Type Questions.

EXERCISE

Q.1 What are the four major functions of an operating system?

Q.2 What are the various types of operating system used on PC?

Q.3 Define a multi-tasking operating system.

Q.4 Define GUI.

Q.5 What is computer security?

Q.6 What is software? (2015-Summer)

Q.7 Write types of software?

Q.8 What is application software?

Q.9 What is system software? Quote some examples of system software?

Q.10 What is an interpreter? How is it different from compiler?

Long Answer Type Questions

Q.1 Discuss the various objectives of an operating system. Illustrate your answer with

proper examples.

Q.2 What is DOS? Discuss about the main features of DOS with appropriate examples.

Q.3 Compare and contrast between the features of UNIX operating system.

Q.4 Compare the various features of windows and UNIX operating system. Give

suitable example to substantiate your answer. (2015-Summer)

Q.5 Write a short note on Single user Vs. Multi-user O.S.

Q.6 What is Virus? How does virus spread and what are the symptoms of virus attack?
How can you prevent virus attack? (2017-Winter) (2013-Winter) (2014-Winter)

Q.7 Distinguish between Compiler and Interpreter? (2016-Summer)

Q.8 Define Software. Describe various types of software and explain them?

CHAPTER –3: COMPUTER NETWORK AND INTERNET

3.1 Networking concept, Protocol, Connecting Media, Data

Transmission mode

Networking concept

 A computer network is a collection of two or more computers, which are connected

two or more computers, which are connected together to share information and

resources.

 It is a combination of hardware and software that allows communication between

computers over a network.

3.1.1 Protocol

 A protocol is a set of rules that the communication set of rules that the

communication between computers on a network.

 Most important sets of internet protocols are TCP/IP, HTTPS, SMTP, and FTP.

3.1.2 Connecting Media

 Connecting media of a network refer to the transmission media used in the network.

 It refers to the physical media through which communication signals can be

transmitted from one point to another.

 It can be divided into two broad categories

1) Guided Media

2) Unguided Media

Guided Media:

 The data signal in guided medium is bound by the cabling system that guide the data

signal along a specific path.

 It consists of a cable composed of materials like copper, tin or silver.

 Basically, they are divided into three categories:

(a) Ethernet cable or Twisted Pair:

 In this pair, wires are twisted together, which are surrounded by an insulating

material and an outer layer called jacket.

 A twisted pair consists of two conductors (copper)

 Ex- LAN Cable

(b) Coaxial Cable:

 It carries the signal of higher frequency data communication through the

network.

 It is commonly used in transferring multi-channel television signals in cities.

 Ex- cable TV network

(c)Fiber – Optics Cable:

 It is made up of glass or plastic and transmits signals in the form of light from a

source at one end to another end.

 The speed of Optical fiber is hundreds of times of faster than coaxial cables.

 Ex-Wavelength Division Multiplexing, SONET network

Unguided Media:

 It is the transfer of information over a distance without the use of enhanced electrical

conductors or wires.

 When the computers in a network interconnected and data is transmitted through

waves, then they are said to be connected through unguided media.

 Some commonly used unguided media of transmission are –

1. Radio wave transmission

2. Micro wave transmission

3. Satellite communication

4. Infrared wave transmission

5. Bluetooth.

3.1.3 Date Transmission mode

 The way in which data is transmitted from one place to another is called Data

transmission mode or data communication mode or directional modes.

 There are mainly 3 types of data transmission modes are-

1. Simplex mode

2. Half –duplex Mode

3. Full –duplex mode

Simplex mode-

 In simplex mode, data can flow in only one direction.

 In this mode, a sender can only send data and cannot receive it.

 Similarly, a receiver can only receive data but cannot send it.

 Ex- Radio, Television etc.

Half –duplex Mode-

 In half-duplex mode, data can flow in both directions but not at a same time.

 In this mode, data is sent and received alternatively.

 Ex- walkie-Talkie

Full-Duplex Mode

 In full Duplex-mode, data can flow in both directions at the same time.

 Ex- Mobile phone.

3.2 Network Topologies, Types of Network

3.2.1 Network Topologies

 Network topology is determined only by the configuration of connections between
nodes.

 In a fully connected network with n nodes, there are n(n-1)/2 direct links.

 The most commonly used topology are described below:

1. Bus Topology

 In case of Bus topology, all devices share single communication line or cable.

 It is one of the simple forms of networking where a failure of a device does not

affect the other devices.

 But failure of the shared communication line can make all other devices stop

functioning.

[Bus Topology Diagram]

2. Ring Topology

 In ring topology, each host machine connects to exactly two other

machines, creating a circular network structure.

 Failure of any host results in failure of the whole ring.

 Thus, every connection in the ring is point of failure.

[Ring Topology Diagram]

3. Star Topology

 All hosts in star topology are connected to a central device, known as hub device,

using a point-to-point connection.

 If the central hub fails, then whole network fails.

[Star Topology Diagram]

4. Tree Topology

 This is also known as hierarchical topology.

 It is a network topology in which nodes are arranged as a tree.

 The function of the central node in this topology may be distributed.

 It is an extension and variation of star topology.

 A tree topology combines characteristics of linear bus and star topologies.

[Tree Topology Diagram]

5. Mesh Topology

 It is also known as completely interconnected topology.

 In mesh topology, every node has a dedicated point to point link to every other node.

[Mesh Topology Diagram]

3.2.2 Types of Network

 There are broadly classified into three types of computer network.

A. LAN

B. WAN

C. MAN

D. PAN

LAN (Local Area Network)

 LAN is a small and single site network.

 A LAN connects network devices over a relatively short distance.

 It is a system in which computers area interconnected and the geographical

area such as home, office, building, school may be within a building.

 On most LANs cables are used to connect the computers.

 Data transfer rate in LAN is of the order 10 to 100Mbps.

WAN (Wide Area Network)

 A WAN is a geographically dispersed collection of LANs

 A WAN like the internet spans most of the world.

 A network device called a router connects LAN to a WAN.

 These kind of networks use telephone lines, Satellite links and other long-range

communication technologies to connect.

 WAN use technology like ATM for connectivity.

MAN (Metropolitan Area Network)

 It is a data network designed for a town or city.

 It connects an area larger than a LAN, but smaller than a WAN, such as a city,

with high performance hardware.

 Its main purpose is to share hardware and software resources by the various

users.

 Ex- Cable TV network.

 The computers in a WAN are connected using coaxial cables or fiber optic
cables.

PAN (Personal Area Network)

 A personal area network (PAN) is a computer network used for communication

among computer devices close to one person.

 Some examples of devices that are used in a PAN are printers, fax machines,

telephones, PDAs or scanners.

 The reach of a PAN is typically within about 20-30 feet (approximately 6-9

meters).

 Personal area networks may be wired with computer buses such as USB and

FireWire.

 A wireless personal area network (WPAN) can also be made possible with

network technologies such as IrDA and Bluetooth..

3.3 Networking Devices like Hub, Repeater, Switch, Bridge, Router,

Gateway & NIC

 Network devices are required to provide an interface to connect multiple computers in

a network.

 There are many types of network devices used in networking. These are
Hub, Repeater, Switch, Bridge, Router, Gateway & NIC

HUB-

o Networking using a star topology requires a central point for the devices to connect.

o It is like a repeater with multiple ports to connect the network channels.

REPEATER

o Repeaters have two ports and can connect two segments of a LAN.

o It is an electronic device that receives a signal and retransmits it.

SWITCH

o It is a small hardware device that joins multiple computers together one LAN.

o It helps to reduce overall network traffic.

BRIDGE

o A bridge is used to join two network segments together; it allows computers on either

segment to access resources on the other.

o They can also be used to divided large networks into smaller segment.

o A bridge is used to join two network segments together; it allows computers on either

segment to access resources on the other.

o They can also be used to divide large networks into smaller segment.

ROUTER

o Routers are networking devices used to extend or segment packets from one logical

network to another.

o Routers are most often used in large internetworks that use LANs to the internet

using dedicated leased lines.

GATEWAY

o It is an internetworking device, which joins two different network protocols together.

o They are also known as protocol converters.

NIC (Network Interface Card)

o It is a hardware Card installed in a computer so it can communicate on a network.

o The network adapter provides one or more ports for the network cable to connect to and

it transmits and receives data onto the network cable.

3.4 Internet Services like E-Mail, WWW, FTP, Chatting, Internet

Conferencing, Electronic Newspaper & Online Shopping

 Internet is a network of networks that consists millions of private and public network of

local to global scope.

 An internet user can access to a wide variety of services such as

E-MAIL (Electronic Mail)

o E-mail is an electronic version of sending and receiving letter.

o To use E-mail, a user must have an Email address.

o The Email address contains all information required to send or receive a

message is called mail box.

o Email address consists of two parts separated by @ symbol

 1st part is user name

 2nd part is host name (domain

name) Example:

 principalbose@rediffmail.com

WWW (World Wide Web)

o The World Wide Web is a system of internet servers that supports hypertext and

multimedia to access several internet protocols on a single interface.

o It is a way of exchanging information between computers on the internet.

Example:

https://www.google.com/

http://www.bosecuttack.in/

FTP (File Transfer Protocol)

o FTP is the internet file transfer between any computers that have an internet

connection and also works between computers using totally different operating

systems.

mailto:principalbose@rediffmail.com
https://www.google.com/
http://www.bosecuttack.in/

o It is a protocol through which internet users can upload files from their

computers to a website or download files from a website to their PC.

o It is the easiest way to transfer files between computers via the internet and

utilities TCP/IP systems to perform uploading and downloading tasks.

Chatting

o Chatting is the online textual or multimedia conversation.

o Chatting i.e., a virtual means of communication that involves the sending

and receiving of messages, share audio and video between users located in

any part of the world.

Internet Conferencing

o Internet conferencing allows users to carry on business meetings and seminars

make presentation, provide online education and offer direct customer support.

o Internet conferencing solutions require high speed internet connection at all

user site.

Electronic Newspaper

o An electronic newspaper is a self-contained, reusable and refreshable version

of a traditional newspaper that acquires and holds information electronically.

o Information to be displayed will be downloaded through some wireless

internet connections.

Online Shopping

o It is the process of buying goods and services from merchants who sell on

the internet.

o The main components of online shopping are product, selling price, accessibility

to people, placement of orders, mode of payments, delivery mechanism.

3.5 Different types of Internet connectivity and ISP

Different types of Internet connectivity

There are different types of connections and speeds to get on the information super

high way.

1) Dial-Up Connections

• A dial up is a method of connecting to the internet using an existing telephone.

• Dial up connection uses the telephone line to connect to the internet.

• The modem must dial the telephone every time it wants to connect to the

internet hence the name Dial up.

a) Modem Dial-Up Connections-

 The modem connects the computer through the standard phone line which

serves as the data transfer medium.

 A modem changes the digital data from your computer into analog data, a

format that can be carried by telephone lines.

b) ISDN Dial-Up Connections-

 The second type of dial up connection is through an ISDN (Integrated

services digital network).

 It is a digital telephone service that can transmit voice, data and control

information over an existing single telephone line.

2) ADSL Connections

 ADSL (Asymmetric Digital Subscribers Line) connections are becoming

more and more widely available and can provide an excellent internet

connection.

 The connections work by splitting your phone line two separate channels,

one for data (Internet) and one for voice (phone calls), which means you

can talk on the phone and be connected to the internet at the same time.

3) Cable Connections

 Cable connection are considered one of the best types of internet

connections available to the home user, they offer very fast and reliable

connections with a fixed monthly fee.

 A cable connection uses a totally separate medium to transfer that it

doesn't affect your ability to make/receive phone calls.

 Cable connections are always on, eliminating long wait to make a

connection.

ISP (Internet Service Provider)

 When a user initiates a Dial up connection, the modem dials a phone number

of an internet service provider (ISP) that is designated to receive Dial up

calls.

 The ISP then establishes the connection, which usually takes about ten

seconds and is accompanied by several beeping and buzzing sounds.

 ISP refers to the company that provides internet connections to the users.

 Some popular ISP‘s, are Airtel, MTNL, Vodafone etc.

Solved Questions

Short Answer Type Questions.

Q.1 Define WWW. (2017-Winter)

Ans.The World Wide Web, commonly known as the Web, is an information system

where documents and other web resources are identified by Uniform Resource

Locators, which may be interlinked by hypertext, and are accessible over the

Internet.

Q.2 Define HTTP.

Ans.The Hypertext Transfer Protocol is an application layer protocol for distributed,

collaborative, hypermedia information systems.

Q.3 Define a DNS.

Ans.The Domain Name System is a hierarchical and decentralized naming system for

computers, services, or other resources connected to the Internet or a private

network. It associates various information with domain names assigned to each of

the participating entities.

Q.4 Define a FTP. (2016-Winter)

Ans. The File Transfer Protocol is a standard network protocol used for the transfer of

computer files from a server to a client on a computer network.

http://www/

Long Answer Type Questions

Q.1 Explain e-mail message format? (2017-Winter)

Ans. Electronic Mail (e-mail) is one of the most widely used services of the Internet.

This service allows an Internet user to send a message in a formatted manner

(mail) to other

Internet users in any part of the world. Message in the mail not only contain text, but it

also contains images, audio and videos data. The person who is sending mail is

called sender and person who receives mail is called the recipient. It is just like postal

mail service.

Format of E-mail:

An e-mail consists of three parts that are as follows:

1. Envelope

2. Header

3. Body

These are explained as following below.

1. Envelope:

The envelope part encapsulates the message. It contains all information that is

required for sending any e-mail such as destination address, priority and security

level. The envelope is used by MTAs for routing message.

2. Header:

The header consists of a series of lines. Each header field consists of a single line of

ASCII text specifying field name, colon and value. The main header fields related to

message transport are:

To: It specifies the DNS address of the primary recipient(s).

CC: It refers to carbon copy. It specifies address of secondary recipient(s).

BCC: It refers to blind carbon copy. It is very similar to Cc. The only difference

between Cc and Bcc is that it allow user to send copy to the third party without

primary and secondary recipient knowing about this.

From: It specifies name of person who wrote message.

Sender: It specifies e-mail address of person who has sent message.

Received: It refers to identity of sender‘s, data and also time message was
received. It also contains the information which is used to find bugs in routing
system. Return-Path: It is added by the message transfer agent. This part is
used to specify how to get back to the sender.

3. Body:

The body of a message contains text that is the actual content/message that needs to

be sent, such as ―Employees who are eligible for the new health care program should

contact their supervisors by next Friday if they want to switch.‖ The message body

also may include signatures or automatically generated text that is inserted by the

sender‘s email system.

Q.2 What do you mean by network topologies? What are the major types of network

topologies? (2016-Winter) (2015-Winter) (2013-Winter)

Ans.

There are five types of topology in computer

networks: These are

1. Mesh Topology

2. Star Topology

3. Bus Topology

4. Ring Topology

5. Hybrid Topology

Mesh Topology

In mesh topology each device is connected to every other device on the

network through a dedicated point-to-point link. When we say dedicated it means that

the link only carries data for the two connected devices only. Let‘s say we have n

devices in the network then each device must be connected with (n-1) devices of the

network. Number of links in a mesh topology of n devices would be n(n-1)/2.

Advantages of Mesh topology

1. No data traffic issues as there is a dedicated link between two devices which

means the link is only available for those two devices.

2. Mesh topology is reliable and robust as failure of one link doesn‘t affect other links
and

the communication between other devices on the network.

3. Mesh topology is secure because there is a point to point link thus unauthorized

access is not possible.

4. Fault detection is easy.

Disadvantages of Mesh topology

1. Amount of wires required to connected each system is tedious and headache.

2. Since each device needs to be connected with other devices, number of

I/O ports required must be huge.

3. Scalability issues because a device cannot be connected with large number of
devices with a dedicated point to point link.

Star Topology

In star topology each device in the network is connected to a central device called

hub. Unlike Mesh topology, star topology doesn‘t allow direct communication between

devices; a device must have to communicate through hub. If one device wants to send

data to other device, it has to first send the data to hub and then the hub transmit that data

to the designated device.

Advantages of Star topology

1. Less expensive because each device only need one I/O port and needs to be

connected with hub with one link.

2. Easier to install

3. Less amount of cables required because each device needs to be connected with

the hub only.

4. Robust, if one link fails, other links will work just fine.

5. Easy fault detection because the link can be easily identified.

Disadvantages of Star topology

1. If hub goes down everything goes down, none of the devices can work without hub.

2. Hub requires more resources and regular maintenance because it is the central

system of star topology.

Bus Topology

In bus topology there is a main cable and all the devices are connected to this main

cable through drop lines. There is a device called tap that connects the drop line to the main

cable. Since all the data is transmitted over the main cable, there is a limit of drop lines and

the distance a main cable can have.

Advantages of bus topology

1. Easy installation, each cable needs to be connected with backbone cable.

2. Less cables required than Mesh and star topology

Disadvantages of bus topology

1. Difficultly in fault detection.

2. Not scalable as there is a limit of how many nodes you can connect with backbone cable.

Ring Topology

In ring topology each device is connected with the two devices on either side of it.

There are two dedicated point to point links a device has with the devices on the either

side of it. This structure forms a ring thus it is known as ring topology. If a device wants to

send data to another device then it sends the data in one direction, each device in ring

topology has a repeater, if the received data is intended for other device then repeater

forwards this data until the intended device receives it.

Advantages of Ring Topology

1. Easy to install.

2. Managing is easier as to add or remove a device from the topology only two

links are required to be changed.

Disadvantages of Ring Topology

1. A link failure can fail the entire network as the signal will not travel forward

due to failure.

2. Data traffic issues, since all the data is circulating in a ring.

Hybrid topology

A combination of two or more topology is known as hybrid topology. For example a

combination of star and mesh topology is known as hybrid topology.

Advantages of Hybrid topology

1. We can choose the topology based on the requirement for example, scalability is

our concern then we can use star topology instead of bus technology.

2. Scalable as we can further connect other computer networks with the existing

networks with different topologies.

Disadvantages of Hybrid topology

1. Fault detection is difficult.

2. Installation is difficult.

3. Design is complex so maintenance is high thus expensive.

Short Answer Type Questions.

EXERCISE

Q.1 Define computer network. (2014-Summer)

Q.2 What are the various types of networks?

Q.3 What is a MAN?

Q.4 What are the different topologies used in computer network? (2018-Summer)

Q.5 Name some Internet service providers in India?

Q.6 What do you mean by a web page?

Q.7 What is a website?

Q.8 What is e-mail? What are the uses of e-mail?

Q.9 What are the benefits of e-mail?

Q.10 What are the limitations of e-mail?

Q.11 Define a URL. (2013-Summer)

Q.12 What do you mean by Network topology? (2016-Winter)

Q.13 What are the advantages and Disadvantages of Bus Topology?

Q.14 What is a modem?

Long Answer Type Questions

Q.1 Discuss about the various categories of computer network. Give a comparisons

between LAN and WAN.

Q.2 Describe various categories of network with example. (2016-Summer)

CHAPTER – 4: FILE MANAGEMENT AND DATA PROCESSING

4.1 Concept of File and Folder

Concept of file and folder: -
 In earlier DOS based system, we had organized data into files and directories.

 In GUI based operating system, such as window, we have file and folders, in which data
are organized during storage in computer memory.

 However, the unit of raw data in binary format is either byte (B) or kilobyte(KB) or
megabyte(MB) or gigabyte (GB).

 A byte is smallest unit of information. It is used to measure the size of our documents.
1Byte=1B=8bits

1KB=210Bytes=1024Bytes

1MB= 210KB= 1024KB

1GB=210MB= 1024MB

1TB=210GB= 1024GB

Files:
 Files are the most basic unit of data that user can store on a disk. A file is the common

storage unit in a computer.

 All program and data are contained in a file and the computer needs and writes files.

 In every program, image, video, song and document are stored in a file.

 It is possible to move a file from one folder to another.

 One can create, save, open, move and delete files.

 There are different types of files depending on the type of information they contain. There
are image files etc.

 The files are assigned a type of file which can be known from the extension of the file
name.

 The file name can have up to 255 character, it can contain letter, number, blank space
and special characters like dashes, underlines, etc. but there is a group that cannot be
used (―, /,

 >, <, |)

 File extension files are identified by a short "extension" at the end of their name.

 Ex: Soumya.jpg is a JPEG image

 Chandan.doc is a Microsoft word doc

 ABC.exe is an executable application in windows.

Folders:

 A folder is a collection of multiple files.

 A folder holds one or more files and it can be empty with just a name.

 Folder can also store other folders called subfolders.

 Folders were also called "directories" in operating systems before windows.

 It would become almost possible to manage hundreds of files in your computer.

Different between a file and a folder:

File:

 File store data, whether text, music or item.

 Files are taking spaces on computer memory.

 Each file has its own extension.

 Easily move or copy data from one file to another.

 Cannot create any folder or subfolder with in a file.

Folder:

 A folder stores files and other folders.

 Folders are not taking space on computer memory.

 Folders do not have any extension.

 Copy or move files from one folder to another folder.

 Can create different types of files or sub folders in a folder.

4.2 File Access and Storage methods. Sequential, Direct, ISAM

File Access and storage method:
 An access method defines the technique that is used to store and receive data.

 An access method is a function of a main frame operating system that enableaccess to
data on click or other external device.

 In computing an access method is a program or a hardware mechanism thatmoves the
data between the computer and an outing device such as a hard diskor a display
terminal.

 It is also used to describe the way that data is located within a large unit of datasuch as a
data set or files.

 There are various types of access methods

1) Random Access or Direct Access:

 Direct access method is based on a disk model if a file, since disks allowrandom access
to any file block.

 This types of access method provides a speedy access to the file. It provides immediate
access to large amount of information.

 It allows the programs to read and write the records in a rapid manner in on particular
orders.

 For direct access, we can view the file as a number sequence of blocks or records.

 This method is usually used in database.

2) Sequential Access:

 This is the most common method.

 Here the information present in the file is accessed in a sequential fashion, on record
after the other.

 It is very common approach which is used by editors and compiler usually.

 The Read and write operation from the major part of the operations done on a file.

 A read operation reads the next portion of the file and automatically advances the file
pointer, which tracks the I/O Locations.

 A write operation appends to the end of files and advances to the and, if the newly written
material.

3) Indexed Sequential Access Method (ISAM)-

 This method is built on top of direct access method.

 Here an index contains the pointers to various blocks of the file.

 So, to find a record inside a file, we firstly search the index and later use the pointer
obtained to access the file directly and find the record we have been searching for.

 The records of the data file are stored in sequential order according to some data
attributes.

 Since ISAM is static, it doesn't change its structure if records are added or deleted from
the data file.

 ISAM is available in many variations on microcomputer, mini computers, and main frame
computers.

4.3 Data Capture, Data storage, Data Processing and Retrieval

4.3.1 Data Capture: -
 Data capture is the process of identification and extraction of data from ascanned

document, often to be sent to a workflow for routing and action aspart of business
process.

 Multiple methods are available for capturing data from unstructured documents (letters,
invoices, email, fax, forms etc.)

 Methods of capture from documents in electronic format are identified below:

Single click:
 It is an optical character recognition (OCR) tool that can be used to capture machine

produced characters in low volume ad-hoc capture application and populating a line of
business application.

OCR:

 OCR as technology provides the ability to successfully capture machine produced
characters in full page.

 OCR systems can recognize many different OCR fonts as well as typewriter and
computer printed characters.

ICR (Intelligent character recognition):

 ICR is the computer translation hand printed and written characters.

 Data is entered from hand printed forms through a scanner and the image of the capture
data is then analyzed and then translated by sophisticated ICR software.

Barcode Recognition:

 Dependent upon the type of barcodes that is used, the amount of meta data that can be
included is high, as is the level of recognition.

 The application of single and multiple bar codes to particular document types such as
proof of delivery notes.

IDR (Intelligent document recognition):

 The level of capability is dependent upon the individual product.

 These application are used to capture metadata from documents that is ruled based.

 Ex: The product will identify post codes, logos, keywords.

4.3.2 Data Storage:
 Data storage is the holding of data in an electromagnetic from for access by a computer

processor.

 There are two kinds of storage:

a) Primary storage is data that is held in RAM and other memory devices that are built into
computers.

b) Secondary storage is data that is stored on external storage devices such as hard disks,
tapes, CD, Pen drive etc.

Following are some main devices for data storage:
 Hard disks
 Floppy disks
 Optical disks
 CD
 Pen drives
 Flat memory card/memory card

4.3.3 Data Processing:
 Data processing must be processed in order to convert it into information.

 For this purpose, different operations may be performed on data.

 Data processing is defined as a sequence of operations on data to convert it into useful
information.

 The data processing can be accomplished through following methods:

1. Manual Data Processing:

 In this method, data is processed manually without using any machine or tool to
get required results.

 In manual data processing, all the calculations and logical operations are
performed manually on the data.

 Ex: Mark sheets, fee receipts

2. Mechanical Data Processing:

 In this method, data is processed by using different devices like type writers,
mechanical printers or other mechanical devices.

 Examination board and printing press use mechanical data processing devices
frequently.

3. Electronic Data Processing:

 It is the modern technique to process data.

 The data is processed through computer; data and set of instructions are given to
the computer as input and the data according to the given set of instructions.

 The computer is also known as electronic data processing machine.

 Ex: results of students are prepared through computers.

4.3.4 Data Retrieval:
 Data is one of the most important assets of any business.

 Data recovery refers to the whole process of salvaging this lost data that is corrupted,
failed, damaged or inaccessible.

 Lost files can occur because of any of the below possibilities.

1) File was mistakenly deleted.

2) File was corrupted or deleted by scandisk.

3) Another program deleted the file.

4) File is password protected.

 Following are some different methods of data recovery: -

1) Physical damage to storage devices:

 Different failure can cause physical damage to your storage media.

2) Media errors and corrupt partitions and file systems:

 In some cases, media errors or damage to the file system or partition table can
make the data on a hard drive to be unreadable.

3) Online data recovery:

 This is another popular method of data recovery Sydney business use to restore
deleted or lost files.

 It is a method of data recovery that is performed over the internet without
necessarily having the computer or the drive in possession.

Solved Questions

Short Answer Type Questions.

Q. 1 What is the difference between file and folder.

Ans:-.

Sl. No. Key File Folder

1 Extension Files may or may not have
extensions.

Folders do not
 have extensions.

2 Container A File can not
contain another
file/folder.

A folder can contain any
number of file/folders.

3 Memory size A file has certain
size and memory
consumption.

A folder has no size of its
own. It derives the
size from the files it contains.

4 Attributes Name, Extension, Date, Time,
Length and Protection (Read-
Only, hidden
etc.)

Name, Date, Time and
Protection (Read-Only,
hidden etc.)

Q. 2 What do you mean by ISAM? (2016-Winter)

Ans:-i.
I. It stands for Indexed Sequential Access Method.

II. ISAM is a method for creating, maintaining, and manipulating computer files of data

so that records can be retrieved sequentially or randomly by one or more keys.

III. In this method, each record has the address of its data block, searching a record in

a huge database is quick and easy.

IV. This method supports range retrieval and partial retrieval of records.

Q. 3 Define OCR.

Ans:-
I. Stands for "Optical Character Recognition.
II. OCR is a technology that recognizes text within a digital image.
III. It is commonly used to recognize text in scanned documents, but it serves many

other purposes as well.

Q. 4 What is folder. (2017-Winter)

Ans:-A Folder is a collection of tables, charts, or other outputs in the Report tree.

 It is the same idea as having folders on your computer.

 They created by right-clicking on the Report tree and selecting Add Folder.

 Folders are also called directories because of the way they organize data within the

file system of a storage device.

Long Answer Type Questions.

Q. 1 What is file access? Explain the various type of file access method. (2014-Winter)

(2015- Winter)

Ans:- A file access definition can control access to data in specified tables and columns, or

to tables and columns for which access is not granted explicitly. You define access

permissions by creating an access list for a table, column, or the default.

When a file is used, information is read and accessed into computer memory and there

are several ways to access this information of the file. Some systems provide only one

access method for files.

There are three ways to access a file into a computer system: Sequential-

Access, Direct Access, Index sequential Method.

1. Sequential Access –

Data is accessed one record right after another record in an order. When we use
read command, it move ahead pointer by one. When we use write command, it will
allocate memory and move the pointer to the end of the file. Such a method is
reasonable for tape.

2. Direct Access –

Another method is direct access method also known as relative access method. A

filed- length logical record that allows the program to read and write record rapidly.

in no particular order. The direct access is based on the disk model of a file since

disk allows random access to any file block. For direct access, the file is viewed as

a numbered sequence of block or record. Thus, we may read block 14 then block

59 and then we can write block 17. There is no restriction on the order of reading

and writing for a direct access file.

3. Index sequential method –

It is the other method of accessing a file which is built on the top of the sequential

access method. These methods construct an index for the file. The index, like an

index in the back of a book, contains the pointer to the various blocks. To find a

record in the file, we first search the index and then by the help of pointer we

access the file directly.

Q. 2 Discuss about the Data storage devices.

Ans:- A storage device is a piece of computer hardware used for saving, carrying and

pulling out data. It can keep and retain information short-term or long-term. It can be a

device inside or outside a computer or server. Other terms for storage device is

storage medium or storage media.

A storage device is one of the basic elements of any computer device. It almost

saves all data and applications in a computer except for hardware firmware. It

comes in different shapes and sizes depending on the needs and functionalities.

There are two different types of storage devices:
 Primary Storage Device Secondary Storage Device

Size Smaller Larger

Data Retention Temporary Permanent

Location Internal Internal / External

E.g RAM, ROM Magnetic Storage Device,

Floppy diskette, Hard drive,

Magnetic strip , Cassette

tape, etc.

Short Answer Type Questions.

EXERCISE

Q.1 What is the difference between Random Access method and sequential access
method?
(2017-Winter)

Q.2 What is Data processing and discuss about some operations that can be performed on
data?

Long Answer Type Questions.

Q.1 What do you mean by file access? Explain the various types of file access

techniques. (2017- Summer)

Q.2 Discuss about the Data Retrieval.

CHAPTER –5: PROBLEM SOLVING METHODOLOGY

Problem solving
Solving problems is the core of computer science. Programmers must first understand

how a human solves a problem, then understand how to translate this "algorithm" into
something a computer can do, and finally how to "write" the specific syntax (required by a
computer) to get the job done. It is sometimes the case that a machine will solve a problem in
a completely different way than a human.

Computer Programmers are problem solvers. In order to solve a problem on a computer
you must:

1. Know how to represent the information (data) describing the problem.

2. Determine the steps to transform the information from one representation into another

5.1 Algorithm, Pseudo code and Flowchart

5.1.1 Algorithm
An algorithm is a set of specific steps to solve a problem. Think of it this way: if you

were to tell your 3 year old niece to play your favorite song on the piano (assuming the niece
has never played a piano), you would have to tell her where the piano was, and how to sit on
the bench, and how to open the cover, and which keys to press, and which order to press
them in, etc, etc, etc.

Definition:

 An algorithm is a well-defined procedure that allows a computer to solve a problem.

 Algorithm is defined as the step-by-step solution of problem in user‘s language.

 It is considered as an effective procedure for solving a problem in finite number of steps.

 Another way to describe an algorithm is a sequence of unambiguous instructions.

 In fact, it is difficult to think of a task performed by your computer that does not use
algorithms.

The characteristics of Algorithm are

 Precise

 Unambiguous

 Finite termination

 Unique solution

Example:

1. Algorithm to find out sum of two numbers to be taken as input.

Step-1 Read the 1st number x
Step-2 Read the 2nd number y
Step-3Sum=x+y
Step-4 Print Sum

This is an example where only sequence is exhibited

2. Algorithm to find out larger between two numbers to be taken as input.

Step-1 Read the 1st number x
Step-2 Read the 2nd number y
Step-3 If x > y

Then Print x
Else if x<y
Then Print y
Else Print ―Both are Equal ―

This is an example where Branching is exhibited

3. Algorithm to find out sum of first 10 natural numbers.
Step-1 i=1, Sum=0
Step-2 Repeat step 3 and 4 while i<>10
Step-3 Sum= Sum+i
Step-4 i=i+1 Step-5 Print Sum

This is an example where Repetition is exhibited

5.1.2 Pseudocode
It is a concise description algorithm in English language that uses programming

language constructs. It contains outlines of the program that can be easily converted to
program. It focuses on the logic of the algorithm without giving stress on the syntax of
programming language. This is meant for understanding the logic of the program easily.
Flowchart can be considered as an alternative to pseudo code. Several constructs/key words
of programming language can be used in the algorithm to write the pseudo code.

Some of them are

If ... Endif
Do while ... end do
While ... end while
Repeat ... until
For ... end for
Case end case
Call
 Return

5.1.3 Flowchart

Flowchart is a graphical or symbolic representation of the process of solution to a
problem or algorithm. It helps to visualize the complex logic of the solution of the problem in a
simplified manner through diagrammatic representation. Each step of the algorithm is
presented using a symbol and a short description. The different symbols used for the flowchart
are

Symbol Purpose Description

Flow line

Indicates the flow of logic by connecting
symbols.

Terminal(Stop/Start)

Represents the start and the end of a
flowchart.

Input/output

Used for input and output operation.

Processing

Used for arithmetic operations and data-
manipulations.

Decision

Used for decision making between two or
more alternatives.

On-page Connector

Used to join different flowline

Off-page Connector

Used to connect the flowchart portion on a
different page.

 Predefined Process/Function Represents a group of statements
performing one processing task.

5.2 Generation of Programming Languages

Programming Language
Programming language is a tool to express the logic or instructions for understanding of

the computer. Any programming language has two components:
a) Syntax
b) Semantics

Syntax refers to the rules to be followed for writing valid program statements. Compiler
can detect errors in syntax while compiling the program. Semantics is associated with logic of
the program. Compiler cannot detect the semantic error. The user of programmer can
diagnose semantic error.

There are good numbers of High level languages, each meant for specific area of data
processing. Commonly known languages are BASIC, FORTRAN, COBOL, Pascal, C, C++ etc.
While FORTRAN is good for Numerical and scientific calculation, COBOL is good for Business
applications involving large amount of data handling.

Generations of Programming Language

The Programming languages can be classified into 4 generations:

1stGeneration: Machine Language

2ndGeneration: Assembly Language

3rdGeneration: High Level Language

4thGeneration: Very High Level Language

Machine Level language contains instructions in binary form i.e. in 0s and 1s. Thus
writing instruction was very difficult and needs heavy expertise. This was used in early days
computers.

Assembly level language instructions were written using symbolic codes known as mnemonics.

In comparison to Machine language, it is relatively easier to write program, but still it requires
lot of expertise. A translator called assembler is used to translate assembly language program
to machine level language.

High level language contains instructions in English like words so that user will feel
easier to formulate and write the logical statements of the program. Here the logic may spread
over multiple statements as against a single statement in assembly language. It uses a
translator called compiler for translation of High level language program to machine level
language program. There are many High level languages used for programming such as
BASIC, FORTRAN, COBOL, PASCAL, C, C++ etc.

Very High Level language otherwise called as 4GL uses nonprocedural logical
statements.

A typical example of 4GL is the query language such as SQL.

Read n1 and n2

5.3 Structured Programming Language
Structured Programming is also known as Modular Programming. In this type of

programming technique, the program shall be broken into several modules. This helps in
managing memory efficiently as the required module of the program will be loaded into the
memory only and not the entire program. This will also enhance code reuse. Writing,
understanding, debugging and modifying the individual module of the program is also easier.

5.4 Examples of Problem solving through Flowchart

Example

1. Add two numbers entered by the user.

Start

Declare variables n1, n2, and sum

sum=n1+n2

Print

(num1+num2)/2

Start

Input Years

Input Rate

2. Flowchart to calculate the average of two numbers

3. Flowchart to Calculate the Interest of a Bank Deposit

Start

Read num1,

num2

Print Interest

 Compound

Interest=Amount*Year*Rate/100

Print Area

𝝅𝒓𝟐

Print Area

4. Flowchart to calculate the area of a circle.

5. Flowchart to calculate the area of a triangle.

Start

Input r

Start

Read a,b,c

 S=
𝒂+𝒃+𝒄

𝟐

Area= 𝒔 𝒔− 𝒂 𝒔− 𝒃 𝒔− 𝒄

Read a, b and c

False True

True

False False True

Is a>c?

 print c print a

Start

Declare variables a, b and c

6. Find the largest among three different numbers entered by the user.

Start

Declare variables a,

b,c, D,x1,x2,rp and ip

True False

Write “roots are
Imaginary”

Display r1 and r2

Calculate discriminant

D b2-4ac

7. Find all the roots of a quadratic equation ax2+bx+c=0

r1 (-b+ 𝑫)/2a

r2 (-b- 𝑫)/2a

Output Answer

 Answer=EVE

8. Flowchart to Determine and Output Whether Number N is Even or Odd

9. Flowchart to find out larger between two numbers to be taken as input

Start

Start

Read

Yes

 Print x

No

Yes

 Print y

Print Both Equal

YES
Is Remainder

NO

YES

NO

Print *Below Freezing* Print *Above Freezing*

Output Answer

YES

NO

Print *Fail* Print *Pass*

10. Flowchart to Determine Whether a Temperature is Below or Above the Freezing Point

11. Flowchart to Determine Whether A Student Passed the Exam or Not

Start

Read temp

Start

Input m1,m2,m3,m4

Start

YES

12. Flowchart to find out sum of first 10 natural numbers

Solved Questions

Short Answer Type Questions.

Q. 1 Define an algorithm. (2013-Winter)

Ans:- An algorithm is a set of instructions designed to perform a specific task. This can be a

simple process, such as multiplying two numbers, or a complex operation, such as

playing a compressed video file. Algorithm is defined as the step-by-step solution of

problem in user‘s language. It is considered as an effective procedure for solving a

problem in finite number of step.

Q. 2 What are the characteristics of an Algorithm?

Ans:-
1. Input specified:

The input is the data to be transformed during the computation to produce the output.
An algorithm should have 0 or more well-defined inputs.

2. Output specified:
The output is the data resulting from the computation (your intended result). An
algorithm should have 1 or more well-defined outputs, and should match the desired
output.

3. Effectiveness:
For an algorithm to be effective, it means that all those steps that are required to get
to output must be feasible with the available resources.

4. Independent:
An algorithm should have step-by-step directions, which should be independent of
any programming code. It should be such that it could be run on any of the
programming languages.

Q. 3 What is the function of a Flow Chart? What information does it depict?

Ans:-

 A flowchart describes the steps software takes to process information, from the beginning
data inputs, through processing and logical decisions, to the point where the program
ends.

 Software developers use flowcharts to plan out how computer applications work before
programmers write the code.

 It helps to visualize the complex logic of the solution of the problem in a simplified
manner through diagrammatic representation

 Each step of the algorithm is presented using a symbol and a short description.

What information It depicts.:-
A flowchart is a picture of the separate steps of a process in sequential order. It is a

generic tool that can be adapted for a wide variety of purposes, and can be used to describe
various processes, such as a manufacturing process, an administrative or service process,
or a project plan.

Q. 4 Differentiate between algorithm and flowchart (2015-

Winter) Ans:-

S.NO Algorithm

1.

Algorithm is step by step
procedure to solve the problem.

Flowchart is a diagram created
by different shapes to show the
flow of data.

Algorithm is complex to
understand.

Flowchart is easy to
understand.

In algorithm plain text are used.

In flowchart,
symbols/shapes are used.

Algorithm is easy to debug.

Flowchart it is hard to debug.

Algorithm is difficult to
construct.

Flowchart is simple to construct.

Start

Read a, b, c

Avg.=Sum/3

Long Answer Type Questions.

Q. 1 Write an algorithms and flow chart of the followings:

a. To find sum & average of 3 numbers.

Ans:-Algorithm

 Step 1: Start.

 Step 2 :Read the three number suppose "a","b","c" from the user.

 Step 3 : Sum=a+b+c;

 Step 4 : Avg.=Sum/3.

 Step 5 :Display "Sum " and "Avg".

 Step 6 :End .
Flowchart:

b. To convert temperature from degree Celsius to

Fahrenheit. Algorithm

 Step1 :Start

 Step2 :Read the input of temperature in Celsius (say C)

 Step3 :F=(9*C)/5+32

 Step4 :Print temperature in Fahrenheit is F

 Step5 :Stop

Start

Read C

Display F

Flowchart

Short Answer Type Questions.

EXERCISE

Q.1 What is a flow chart? (2014-Summer)

Q.2 Give the flowchart symbols for keeping, I/O statement and decision statement.

Long Answer Type Questions

Q.1 Draw a flowchart to find sum of 10 random numbers. (2017-Winter)

Q.2 Write an algorithms and flow chart of the followings:

a. To calculate square of number n.

b. To identify whether entered numbered is positive (+) or negative (-).

c. To generate natural numbers which are divisible by 5 in between 1 and 200?

d. To find sum of digits of a three-digit number (say 364).

CHAPTER – 6: OVERVIEW OF C PROGRAMMING LANGUAGE

6.1 Constants, Variables and Data types in C

The C Language
C is a professional programmer's language. It was designed to get in one's way as little

as possible. Kernighan and Ritchie wrote the original language definition in their book, The C
Programming Language (below), as part of their research at AT&T. Unix and C++ emerged
from the same labs. For several years I used AT&T as my long distance carrier in appreciation
of all that CS research, but hearing "thank you for using AT&T" for the millionth time has used
up that goodwill.

Important Points

 The C Language is developed by Dennis Ritchie for creating system applications that

directly interact with the hardware devices such as drivers, kernels, etc.

 C programming is considered as the base for other programming languages, that is

why it is known as mother language.

 It can be defined by the following ways:

1. Mother language

2. System programming language

3. Procedure-oriented programming language

4. Structured programming language

5. Mid-level programming language

1) C as a mother language
C language is considered as the mother language of all the modern programming

languages because most of the compilers, JVMs, Kernels, etc. are written in C language, and
most of the programming languages follow C syntax, for example, C++, Java, C#, etc. It
provides the core concepts like the array, strings, functions, file handling, etc. that are being
used in many languages like C++, Java, C#, etc.

2) C as a system programming language
A system programming language is used to create system software. C language is a

system programming language because it can be used to do low-level programming (for
example driver and kernel). It is generally used to create hardware devices, OS, drivers,
kernels, etc. For example, Linux kernel is written in C.

It can't be used for internet programming like Java, .Net, PHP, etc.

3) C as a procedural language
A procedure is known as a function, method, routine, subroutine, etc. A procedural

language specifies a series of steps for the program to solve the problem.
A procedural language breaks the program into functions, data structures, etc.
C is a procedural language. In C, variables and function prototypes must be declared

before being used.
4) C as a structured programming language

A structured programming language is a subset of the procedural language. Structure

means to break a program into parts or blocks so that it may be easy to understand.

In the C language, we break the program into parts using functions. It makes the program

easier to understand and modify.

5) C as a mid-level programming language

C is considered as a middle-level language because it supports the feature of both low-
level and high-level languages. C language program is converted into assembly code, it
supports pointer arithmetic (low-level), but it is machine independent (a feature of high-level).

A Low-level language is specific to one machine, i.e., machine dependent. It is machine
dependent, fast to run. But it is not easy to understand.

A High-Level language is not specific to one machine, i.e., machine independent. It is
easy to understand.

Quick History of C

 Developed at Bell Laboratories in the early seventies by Dennis Ritchie.

 Born out of two other languages – BCPL (Basic Control Programming Language) and
B.

 C introduced such things as character types, floating point arithmetic, structures,

unions and the preprocessor.

 The principal objective was to devise a language that was easy enough to understand

to be "high-level" – i.e. understood by general programmers, but low-level enough to

be applicable to the writing of systems-level software.

 The language should abstract the details of how the computer achieves its tasks in

such a way as to ensure that C could be portable across different types of computers,

thus allowing the UNIX operating system to be compiled on other computers with a

minimum of re-writing.

 C as a language was in use by 1973, although extra functionality, such as new types,

was introduced up until 1980.

 In 1978, Brian Kernighan and Dennis M. Ritchie wrote the seminal work The C

Programming Language, which is now the standard reference book for C.

 A formal ANSI standard for C was produced in 1989.

 In 1986, a descendant of C, called C++ was developed by Bjarne Stroustrup, which is

in wide use today. Many modern languages such as C#, Java and Perl are based on C

and C++.

 Using C language scientific, business and system-level applications can be developed

easily.

6.1.1 Constants

In C programming language, a constant is similar to the variable but the constant hold
only one value during the program execution. That means, once a value is assigned to the
constant, that value can't be changed during the program execution. Once the value is

assigned to the constant, it is fixed throughout the program. A constant can be defined as
follows...
A constant is a named memory location which holds only one value throughout the program

execution.

In C programming language, a constant can be of any data type like integer, floating-
point, character, string and double, etc.,

Integer constants

An integer constant can be a decimal integer or octal integer or hexadecimal integer. A
decimal integer value is specified as direct integer value whereas octal integer value is
prefixed with 'O' and hexadecimal value is prefixed with 'OX'.

An integer constant can also be unsigned type of integer constant or long type of integer

constant. Unsigned integer constant value is suffixed with 'u' and long integer constant value is
suffixed with 'l' whereas unsigned long integer constant value is suffixed with 'ul'.

Example

125 ---- > Decimal Integer Constant

O76 ---- > Octal Integer Constant

OX3A ----- >Hexa Decimal Integer Constant

50u ----- > Unsigned Integer Constant

30l ----- > Long Integer Constant

100ul ---- > Unsigned Long Integer Constant

Floating Point constants
A floating-point constant must contain both integer and decimal parts. Sometimes it may

also contain the exponent part. When a floating-point constant is represented in exponent
form, the value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

Character Constants
A character constant is a symbol enclosed in single quotation. A character constant has a

maximum length of one character.
Example

'A'

'2'

'+'
In the C programming language, there are some predefined character constants called

escape sequences. Every escape sequence has its own special functionality and every
escape sequence is prefixed with '\' symbol. These escape sequences are used in output
function called 'printf()'.

String Constants
 A string constant is a collection of characters, digits, special symbols and escape

sequences that are enclosed in double quotations.
 We define string constant in a single line as follows... "This is Diploma smart class"

 We can define string constant using multiple lines as follows...
" This\

is\

 Diploma smart class "

 We can also define string constant by separating it with white space as follows...

"This" "is" "Diploma smart class"

All the above three defines the same string constant.

Creating constants in C

 In a c programming language, constants can be created using two concepts...

o Using the ―const‖ keyword

o Using ―#define‖ preprocessor

Using the “const” keyword

 We create a constant of any data type using 'const' keyword. To create a constant, we

prefix the variable declaration with 'const' keyword.

 The general syntax for creating constant using 'const' keyword is as follows...
const datatype constantName ;

OR
const data type constant Name = value ;

Example

const int x = 10 ;

Here, 'x' is a integer constant with fixed value 10.

Example Program
#include<stdio.h>
#include<conio.h>
void main()
{
int i = 9 ;
const int x = 10 ;
i = 15 ;
x = 100 ; // creates an error
printf("i = %d\nx = %d", i, x) ;
}

The above program gives an error because we are trying to change the constant variable

value (x = 100).

Using '#define' preprocessor

We can also create constants using '#define' preprocessor directive. When we create
constant using this preprocessor directive it must be defined at the beginning of the program
(because all the preprocessor directives must be written before the global declaration).

We use the following syntax to create constant using '#define' preprocessor directive...

#define CONSTANTNAME value

Example

#define PI 3.14

Here, PI is a constant with value 3.14

Example Program
#include<stdio.h>
#include<conio.h>
#define PI 3.14
void main()
{

int r, area ;
printf("Please enter the radius of circle : ") ;
scanf("%d", &r) ;
area = PI * (r * r) ;
printf("Area of the circle = %d", area) ;
}

6.1.2 Variables:
Variables in a c programming language are the named memory locations where the user

can store different values of the same datatype during the program execution. That means a
variable is a name given to a memory location in which we can store different values of the
same data type. In other words, a variable can be defined as a storage container to hold
values of the same data type during the program execution. The formal definition of a data
type is as follows.

Variable is a name given to a memory location where we can store different values
of the same datatype during the program execution.

Every variable in c programming language must be declared in the declaration section
before it is used. Every variable must have a data type that determines the range and type of
values be stored and the size of the memory to be allocated.

A variable name may contain letters, digits and underscore symbol. The following are the
rules to specify a variable name...

 Variable name should not start with a digit.

 Keywords should not be used as variable names.

 A variable name should not contain any special symbols except underscore (_).

 A variable name can be of any length but compiler considers only the first 31

characters of the variable name.

Declaration of Variable
Declaration of a variable tells the compiler to allocate the required amount of memory

with the specified variable name and allows only specified datatype values into that memory
location. In C programming language, the declaration can be performed either before the
function as global variables or inside any block or function. But it must be at the beginning of
block or function.
Declaration Syntax:

datatype variableName;

Example

int number;

The above declaration tells to the compiler that allocates 2 bytes of memory with the
name

―number‖ and allows only integer values into that memory location.

6.1.3 Data types
Data used in c program is classified into different types based on its properties. In the C

programming language, a data type can be defined as a set of values with similar
characteristics. All the values in a data type have the same properties.

Data types in the c programming language are used to specify what kind of value can be
stored in a variable. The memory size and type of the value of a variable are determined by
the variable data type. In a c program, each variable or constant or array must have a data
type and this data type specifies how much memory is to be allocated and what type of values
are to be stored in that variable or constant or array. The formal definition of a data type is as
follows...

The Data type is a set of value with predefined characteristics. Data types are used to
declare variable, constants, arrays, pointers, and functions.

In the c programming language, data types are classified as follows...
 Primary data types (Basic data types OR Predefined data types)
 Derived data types (Secondary data types OR User-defined data types)
 Enumeration data types
 Void data type

Primary data types

The primary data types in the C programming language are the basic data types. All the
primary data types are already defined in the system. Primary data types are also called as
Built-In data types. The following are the primary data types in c programming language.

 Integer data type

 Floating Point data type

 Double data type

 Character data type

Integer Data type (int)

The integer data type is a set of whole numbers. Every integer value does not have the

decimal value. We use the keyword "int" to represent integer data type in c. We use the
keyword int to declare the variables and to specify the return type of a function. The integer
data type is used with different type modifiers like short, long, signed and unsigned. The
following table provides complete details about the integer data type.

Floating Point data types

Floating-point data types are a set of numbers with the decimal value. Every floating-
point value must contain the decimal value. The floating-point data type has two variants...

 float

 double

We use the keyword "float" to represent floating-point data type and "double" to represent
double data type in c. Both float and double are similar but they differ in the number of decimal
places. The float value contains 6 decimal places whereas double value contains 15 or 19
decimal places. The following table provides complete details about floating-point data type.

Character data type

The character data type is a set of characters enclosed in single quotations. The
following table provides complete details about the character data type.

The following table provides complete information about all the data types in c programming

language...

Void data type
The void data type means nothing or no value. Generally, the void is used to specify a

function which does not return any value. We also use the void data type to specify empty
parameters of a function.

Enumerated data type

An enumerated data type is a user-defined data type that consists of integer constants
and each integer constant is given a name. The keyword "enum" is used to define the
enumerated data type.

 Derived data types

Derived data types are user-defined data types. The derived data types are also called
as user- defined data types or secondary data types. In the c programming language, the
derived data types are created using the following concepts...

 Arrays

 Structures

 Unions

6.2 Managing Input and Output operations.

Output Functions
C programming language provides built-in functions to perform output operation. The

output operations are used to display data on user screen (output screen) or printer or any file.
The c programming language provides the following built-in output functions...

 printf()

 putchar()

 puts()

 fprintf()

printf() function
The printf() function is used to print string or data values or a combination of string and

data values on the output screen (User screen). The printf() function is built-in function defined
in a header file called "stdio.h". When we want to use printf() function in our program we need
to include the respective header file (stdio.h) using the #include statement. The printf() function
has the following syntax...
Syntax:

printf("message to be display!!!");

Example Program
#include<stdio.h>
#include<conio.h>
void main()
{
printf("Hello! Welcome to Diploma smart class!!!");
}

In the above example program, we used the printf() function to print a string on to the output
screen.

Output of the program is Hello! Welcome to Diploma smart class!!!

The printf() function is also used to display data values. When we want to display data
values we use format string of the data value to be displayed.
Syntax:

printf("format string",variableName);

Example Program:
#include<stdio.h>
#include<conio.h>
void main()
{
int i = 10; float x = 5.5;
printf("%d %f",i, x);
}

In the above example program, we used the printf() function to print data values of
variables i and x on to the output screen. Here i is an integer variable so we have used format
string %d and x is a float variable so we have used format string %f.

The printf() function can also be used to display string along with data values.
To display the output in different lines or as we wish, we use some special characters

called escape sequences. Escape sequences are special characters with special functionality
used in printf() function to format the output according to the user requirement. In the C
programming language, we have the following escape sequences...

Escape sequence Meaning

\n Moves the cursor to New Line

\t Inserts Horizontal Tab (5 characters space)

\v Inserts Vertical Tab (5 lines space)

\a Beep sound

\b Backspace (removes the previous character
from

its current position)
\\ Inserts Backward slash symbol

\? Inserts Question mark symbol

\' Inserts Single quotation mark symbol

\" Inserts Double quotation mark symbol

Consider the following example program...

 Example Program:

#include<stdio.h>
#include<conio.h>
void main()
{
printf("Welcome to\n");
printf("Diploma smart class\n");
printf("the perfect website for learning");
}

Output:-
Welcome to
Diploma smart class
the perfect website for learning

putchar() function
The putchar() function is used to display a single character on the output screen. The

putchar() functions prints the character which is passed as a parameter to it and returns the
same character as a return value. This function is used to print only a single character. To print
multiple characters we need to write multiple times or use a looping statement. Consider the
following example program...

#include<stdio.h>
#include<conio.h>
void main()
{
char ch = 'A';
putchar(ch);
}

puts() function
The puts() function is used to display a string on the output screen. The puts() functions

prints a string or sequence of characters till the newline. Consider the following example
program...
Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
char name[30];
printf("\nEnter your favourite website: ");
gets(name);
puts(name);
}

fprintf() function
The fprintf() function is used with the concept of files. The fprintf() function is used to print

a line into the file. When you want to use fprintf() function the file must be opened in writing
mode.

Input Functions

C programming language provides built-in functions to perform input operations. The
input operations are used to read user values (input) from the keyboard. The c programming
language provides the following built-in input functions.

 scanf()

 getchar()

 getch()

 gets()

 fscanf()

scanf() function

The scanf() function is used to read multiple data values of different data types from the
keyboard. The scanf() function is built-in function defined in a header file called "stdio.h". When
we want to use scanf() function in our program, we need to include the respective header file
(stdio.h) using #include statement. The scanf() function has the following syntax...
Syntax:

scanf("format strings",&variableNames);

Example Program
#include<stdio.h>
#include<conio.h>
void main()
{
int i;
printf("\nEnter any integer value: ");
scanf("%d",&i);
printf("\nYou have entered %d number",i);
}

In the above example program, we used the scanf() function to read an integer value
from the keyboard and store it into variable 'i'.
Output:-

Enter any integer value: 53
You have entered 53 number

The scanf() function is also used to read multiple data values of different or the same
data types. Consider the following example program...

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
int i; float x;
printf("\nEnter one integer followed by one float value : ");
scanf("%d%f",&i, &x);

printf("\ninteger value = %d, float value = %f",i, x);

}

Output:-
Enter one integer followed by one float value : 59 32.8
integer value = 59, float value =32.8

In the above example program, we used the scanf() function to read one integer value
and one float value from the keyboard. Here 'i' is an integer variable so we have used format
string
%d, and 'x' is a float variable so we have used format string %f.

The scanf() function returns an integer value equal to the total number of input values

read using scanf function.

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
int i,a,b;
float x;
printf("\nEnter two integers and one float : ");
i = scanf("%d%d%f",&a, &b, &x);
printf("\nTotal inputs read : %d",i);
}

getchar() function:

The getchar() function is used to read a character from the keyboard and return it to the
program. This function is used to read a single character. To read multiple characters we need
to write multiple times or use a looping statement. Consider the following example program...

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
char ch;
printf("\nEnter any character : ");
ch = getchar();
printf("\nYou have entered : %c\n",ch);
}

Output:-
Enter any character :H
You have entered :H

getch() function
The getch() function is similar to getchar function. The getch() function is used to read a

character from the keyboard and return it to the program. This function is used to read a single
character. To read multiple characters we need to write multiple times or use a looping
statement. Consider the following example program...

Example Program
#include<stdio.h>
#include<conio.h>
void main()
{
char ch;
printf("\nEnter any character : ");

ch = getch();
printf("\nYou have entered : %c",ch);
}

gets() function

The gets() function is used to read a line of string and stores it into a character array. The
gets() function reads a line of string or sequence of characters till a newline symbol enters.
Consider the following example program...

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
char name[30];
printf("\nEnter your favourite website: ");
gets(name);
printf("%s",name);
}

fscanf() function

The fscanf() function is used with the concept of files. The fscanf() function is used to
read data values from a file. When you want to use fscanf() function the file must be opened in
reading mode.

6.3 Operators, Expressions, Type conversion & Typecasting

6.3.1 Operators
An operator is a symbol used to perform arithmetic and logical operations in a program.

That means an operator is a special symbol that tells the compiler to perform mathematical or
logical operations. C programming language supports a rich set of operators that are classified
as follows.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Increment & Decrement Operators

 Assignment Operators

 Bitwise Operators

 Conditional Operator

 Special Operators

Arithmetic Operators (+, -, *, /, %)

The arithmetic operators are the symbols that are used to perform basic mathematical
operations like addition, subtraction, multiplication, division and percentage modulo. The
following table provides information about arithmetic operators.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the Division 5 % 2 = 1

 The addition operator can be used with numerical data types and character data type.
When it is used with numerical values, it performs mathematical addition and when it is
used with character data type values, it performs concatenation (appending).

 The remainder of the division operator is used with integer data type only.

Relational Operators (<, >, <=, >=, ==, !=)

The relational operators are the symbols that are used to compare two values. That
means the relational operators are used to check the relationship between two values. Every
relational operator has two results TRUE or FALSE. In simple words, the relational operators
are used to define conditions in a program. The following table provides information about
relational operators.

Operator Meaning Example

<

Returns TRUE if the first value is
smaller than second value
otherwise returns FALSE

10 < 5 is FALSE

>

Returns TRUE if the first value is larger than
 second value
otherwise returns FALSE

10 > 5 is TRUE

<=

Returns TRUE if the first value is
smaller than or equal to second value otherwise
returns FALSE

10 <= 5 is FALSE

>=

Returns TRUE if the first value is larger than or
equal to second
value otherwise returns FALSE

10 >= 5 is TRUE

== Returns TRUE if both values are
equal otherwise returns FALSE

10 == 5 is FALSE

!=

Returns TRUE if both values are not equal
 otherwise returns
FALSE

10 != 5 is TRUE

Logical Operators (&&, ||, !)

The logical operators are the symbols that are used to combine multiple conditions into
one condition. The following table provides information about logical operators.

Operator Meaning Example

&&

Logical AND - Returns TRUE if
all conditions are
 TRUE otherwise returns
FALSE

10 < 5 && 12 > 10 is
FALSE

||

Logical OR - Returns FALSE if
all conditions are FALSE
otherwise
returns TRUE

10 < 5 || 12 > 10 is
TRUE

!

Logical NOT - Returns TRUE if
condition is FLASE and
returns
FALSE if it is TRUE

!(10 < 5 && 12 > 10) is
TRUE

 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is
FALSE then complete condition becomes FALSE.

 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is
TRUE then complete condition becomes TRUE.

Increment & Decrement Operators (++ & --)

The increment and decrement operators are called unary operators because both need
only one operand. The increment operators add one to the existing value of the operand and
the decrement operator subtracts one from the existing value of the operand. The following
table provides information about increment and decrement operators.

The increment and decrement operators are used in front of the operand (++a) or after
the operand (a++). If it is used in front of the operand, we call it as pre-increment or pre-
decrement and if it is used after the operand, we call it as post-increment or post-decrement.

Pre-Increment or Pre-Decrement

In the case of pre-increment, the value of the variable is increased by one before the
expression evaluation. In the case of pre-decrement, the value of the variable is decreased by
one before the expression evaluation. That means, when we use pre-increment or pre-
decrement, first the value of the variable is incremented or decremented by one, then the
modified value is used in the expression evaluation.

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
int i = 5,j;
j = ++i; // Pre-Increment
printf("i = %d, j = %d",i,j);
}

Post-Increment or Post-Decrement
In the case of post-increment, the value of the variable is increased by one after the

expression evaluation. In the case of post-decrement, the value of the variable is decreased by
one after the expression evaluation. That means, when we use post-increment or post-
decrement, first the expression is evaluated with existing value, then the value of the variable
is incremented or decremented by one.

Example Program

#include<stdio.h>
#include<conio.h>
void main()
{
int i = 5,j;
j = i++; // Post-Increment
printf("i = %d, j = %d",i,j);

}

Operato
r

Meaning Example

++ Increment
Adds one to existing

value

int a = 5;a++; ⇒

a

= 6

-- Decrement
Subtracts one
 from

existing value

int a = 5;a--; ⇒ a

= 4

Assignment Operators (=, +=, -=, *=, /=, %=)

The assignment operators are used to assign right-hand side value (Rvalue) to the left-

hand side variable (Lvalue). The assignment operator is used in different variants along with
arithmetic operators. The following table describes all the assignment operators in the C
programming language.

Operator Meaning Example

= Assign the right-hand side value to left-
hand side variable

A = 15

+= Add both left and right-hand side values
and store the result into left-hand side

variable

A += 10⇒ A = A+10

-= Subtract right-hand side value from left-
hand side variable value and store the

result into left-hand side variable

A -= B⇒ A = A-B

*= Multiply right-hand side value with left-
hand side variable value and store the

result into left-hand side variable

A *= B⇒ A = A*B

/= Divide left-hand side variable value with
right-hand side variable value and store
the result into the left-hand side variable

A /= B⇒ A = A/B

%= Divide left-hand side variable value with
right-hand side variable value and store

the remainder into the left-hand side
variable

A %= B⇒ A = A%B

Bitwise Operators (&, |, ^, ~, >>, <<)

The bitwise operators are used to perform bit-level operations in the c programming
language. When we use the bitwise operators, the operations are performed based on the
binary values. The following table describes all the bitwise operators in the C programming
language.

Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the

bits are 1 otherwise it is 0

A & B⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the

bits are 0 otherwise it is 1

A | B⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the

bits are same otherwise it is 1

A ^ B⇒ 13 (01101)

~ the result of Bitwise once complement
is

negation of the bit (Flipping)

~A⇒ 6 (00110)

<< the Bitwise left shift operator shifts all

the bits to the left by the specified

number of positions

A << 2⇒ 100

(1100100)

>> the Bitwise right shift operator shifts all

the bits to the right by the specified

number of positions

A >> 2⇒ 6 (00110)

Conditional Operator (?:)

The conditional operator is also called a ternary operator because it requires three

operands. This operator is used for decision making. In this operator, first we verify a
condition, then we perform one operation out of the two operations based on the condition
result. If the condition is TRUE the first option is performed, if the condition is FALSE the
second option is performed. The conditional operator is used with the following syntax.

Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100:200; ⇒ A value is 100

Special Operators (sizeof, pointer, comma, dot, etc.)

The following are the special operators in c programming language.

sizeof operator
This operator is used to find the size of the memory (in bytes) allocated for a variable.

This operator is used with the following syntax.
sizeof(variable Name);

Example

sizeof(A); ⇒ the result is 2 if A is an integer

Pointer operator (*)

This operator is used to define pointer variables in c programming language.

Comma operator (,)
This operator is used to separate variables while they are declaring, separate the

expressions in function calls, etc.

Dot operator (.)

This operator is used to access members of structure or union.

Operator Precedence and Associativity

What is Operator Precedence?
Operator precedence is used to determine the order of operators evaluated in an

expression. In c programming language every operator has precedence (priority). When there
is more than one operator in an expression the operator with higher precedence is evaluated
first and the operator with the least precedence is evaluated last.

What is Operator Associativity?
Operator associativity is used to determine the order of operators with equal precedence

evaluated in an expression. In the c programming language, when an expression contains
multiple operators with equal precedence, we use associativity to determine the order of
evaluation of those operators.

In c programming language the operator precedence and associativity are as shown in
the following table.

Precedence Operator Operator Meaning Associativity

1 ()
[]
->
.

function call array reference
structure member access
structure member access

Left to Right

2 !
~
+
-

++
--
&

* sizeof
(type)

negation
1's complement Unary plus Unary

minus
increment operator decrement

operator address of operator pointer
returns size of a variable

type conversion

Right to Left

3 *
/

%

multiplication
division remainder

Left to Right

4 +
-

addition
subtraction

Left to Right

5 <<
>>

left shift
right shift

Left to Right

6 <
<=
>

>=

less than
less than or equal to greater than

greater than or equal
to

Left to Right

7 ==
!=

equal to
not equal to

Left to Right

8 & bitwise AND Left to Right

9 ^ bitwise EXCLUSIVE OR Left to Right

10 | bitwise OR Left to Right

11 && logical AND Left to Right

12 || logical OR Left to Right

13 ?: conditional operator Left to Right

14 =
*=
/=

%=
+=
-=
&=
^=
|=

<<=
>>=

assignment
assign multiplication assign division
assign remainder assign addition
assign subtraction assign bitwise
AND assign bitwise XOR assign

bitwise OR assign left shift
assign right shift

Right to Left

15 , separator Left to Right

In the above table, the operator precedence decreases from top to bottom and increases
from bottom to top.

6.3.2 Expressions

What is an expression?
In any programming language, if we want to perform any calculation or to frame any

condition etc., we use a set of symbols to perform the task. These set of symbols makes an
expression.

In the C programming language, an expression is defined as follows.

An expression is a collection of operators and operands that represents a specific value.
In the above definition, an operator is a symbol that performs tasks like arithmetic

operations, logical operations, and conditional operations, etc.
Operands are the values on which the operators perform the task. Here operand can be

a direct value or variable or address of memory location.

Expression Types in C
In the C programming language, expressions are divided into THREE types. They are as

follows...

 Infix Expression

 Postfix Expression
 Prefix Expression

The above classification is based on the operator position in the expression.

Infix Expression
 The expression in which the operator is used between operands is called infix

expression.

 The infix expression has the following general structure.

Operand1 Operator Operand2

Postfix Expression

 The expression in which the operator is used after operands is called postfix expression.

 The postfix expression has the following general structure.

Operand1 Operand2 Operator

Prefix Expression

 The expression in which the operator is used before operands is called a prefix
expression.

 The prefix expression has the following general structure.

Operator Operand1 Operand2

6.3.3 Type Conversion and Type Casting

In a programming language, the expression contains data values of the same datatype or

different data types. When the expression contains similar datatype values then it is evaluated
without any problem. But if the expression contains two or more different datatype values then
they must be converted to the single datatype of destination datatype. Here, the destination is
the location where the final result of that expression is stored. For example, the multiplication of
an integer data value with the float data value and storing the result into a float variable. In this
case, the integer value must be converted to float value so that the final result is a float datatype
value.

In a c programming language, the data conversion is performed in two different methods as
follows...

 Type Conversion

 Type Casting

Type Conversion
The type conversion is the process of converting a data value from one data type to

another data type automatically by the compiler. Sometimes type conversion is also called
implicit type conversion. The implicit type conversion is automatically performed by the
compiler.

For example, in c programming language, when we assign an integer value to a float
variable the integer value automatically gets converted to float value by adding decimal value
0. And when a float value is assigned to an integer variable the float value automatically gets
converted to an integer value by removing the decimal value. To understand more about type
conversion observe the following...

int i = 10 ;
float x = 15.5 ;
char ch = 'A' ;
i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i
x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x
i = ch ; =======> Here the ASCII value of A (65) is assigned to i

Example Program
#include<stdio.h>
#include<conio.h>
void main()
{
int i = 95 ;
float x = 90.99 ;
char ch = 'A' ;
i = x ;
printf("i value is %d\n",i);

x = i ;
printf("x value is %f\n",x);

i = ch ;
printf("i value is %d\n",i);
}

In the above program, we assign i = x, i.e., float variable value is assigned to the integer
variable. Here, the compiler automatically converts the float value (90.99) into integer value
(90) by removing the decimal part of the float value (90.99) and then it is assigned to variable i.
Similarly, when we assign x = i, the integer value (90) gets converted to float value
(90.000000) by adding zero as the decimal part.

Typecasting

Typecasting is also called an explicit type conversion. Compiler converts data from one
data type to another data type implicitly. When compiler converts implicitly, there may be a
data loss. In such a case, we convert the data from one data type to another data type using
explicit type conversion. To perform this we use the unary cast operator. To convert data
from one type to another type we specify the target data type in parenthesis as a prefix to the
data value that has to be converted.

The general syntax of typecasting is as follows.

(TargetDatatype) DataValue

Example
int totalMarks = 450, maxMarks = 600 ;
float average ;
average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values.
When we perform totalMarks / maxMarks the result is a float value, but the destination
(average) datatype is a float. So we use type casting to convert totalMarks and maxMarks into
float data type.

Example Program
#include<stdio.h>
#include<conio.h>
int main()
{
int a, b, c ;
float avg ;
printf("Enter any three integer values : ");
scanf(―%d%d%d‖,a,b, c);
avg = (a + b + c) / 3 ;
printf("avg before casting = &f", avg \n);
avg = (float)(a + b + c) / 3 ;
printf("avg after casting = %f",avg\n);
return 0;
}

Comments
Comments in C are enclosed by slash/star pairs: /* .. comments .. */ which may cross

multiple lines. C++ introduced a form of comment started by two slashes and extending to the
end of the line:

// comment until the line end

The // comment form is so handy that many C compilers now also support it, although it
is not technically part of the C language.

Along with well-chosen function names, comments are an important part of well written

code. Comments should not just repeat what the code says. Comments should describe what
the code accomplishes which much more is interesting than a translation of what each
statement does. Comments should also narrate what is tricky or non-obvious about a section
of code.

6.4 Decision Control and Looping Statements (If, If-else, If-else-if,
Switch, While, Do- while, For, Break, Continue & Goto)

Control Structures

C uses curly braces ({}) to group multiple statements together. The statements execute in
order. Some languages let you declare variables on any line (C++). Other languages insist that
variables are declared only at the beginning of functions (Pascal). C takes the middle road --
variables may be declared within the body of a function, but they must follow a '{'. More
modern languages like Java and C++ allow you to declare variables on any line, which is
handy.

What is Decision Making Statement?
In the C programming language, the program execution flow is line by line from top to

bottom. That means the c program is executed line by line from the main method. But this type
of execution flow may not be suitable for all the program solutions. Sometimes, we make some
decisions or we may skip the execution of one or more lines of code. Consider a situation,
where we write a program to check whether a student has passed or failed in a particular
subject. Here, we need to check whether the marks are greater than the pass marks or not. If
marks are greater, then we decide that the student has passed otherwise failed. To solve such
kind of problems in c we use the statements called decision making statements.

Decision-making statements are the statements that are used to verify a given condition
and decide whether a block of statements gets executed or not based on the condition
result.
In the c programming language, there are two decision-making statements they are as follows.

1. if statement
2. switch statement

if statement in c
In c, if statement is used to make decisions based on a condition. The if statement verifies

the given condition and decides whether a block of statements are executed or not based on
the condition result. In c, if statement is classified into four types as follows...

1. Simple if statement
2. if-else statement
3. Nested if statement
4. if-else-if statement (if-else ladder)

Simple if statement

 Simple if statement is used to verify the given condition and executes the block of
statements based on the condition result. The simple if statement evaluates specified condition.
If it is TRUE, it executes the next statement or block of statements. If the condition is FALSE, it
skips the execution of the next statement or block of statements. The general syntax and
execution flow of the simple if statement is as follows.

Simple if statement is used when we have only one option that is executed or skipped based
on a condition.

if-else statement

The if-else statement is used to verify the given condition and executes only one out of the

two blocks of statements based on the condition result. The if-else statement evaluates the
specified condition. If it is TRUE, it executes a block of statements (True block). If the condition
is FALSE, it executes another block of statements (False block). The general syntax and
execution flow of the if-else statement is as follows.

The if-else statement is used when we have two options and only one option has to be

executed based on a condition result (TRUE or FALSE).

Nested if statement

Writing a if statement inside another if statement is called nested if statement. The

general syntax of the nested if statement is as follows.

The nested if statement can be defined using any combination of simple if & if-else
statements.

if-else-if statement (if-else ladder)

Writing a if statement inside else of an if statement is called if-else-if statement. The

general syntax of the if-else-if statement is as follows...

The if-else-if statement can be defined using any combination of simple if & if-else statements.

Examples:

Program 1:(Simple if statement)

#include <stdio.h>
int main()
{
int x = 20;
int y = 22; if (x<y)
{
printf("Variable x is less than y");
}
return 0;
}

Output:
Variable x is less than y

Program 2:(Simple if statement)
#include <stdio.h>
int main()
{
int i = 10;
if (i> 15)
{
printf("10 is less than 15");
}
printf("I am Not in if");

}

Output: I am Not in if

Program 3:(if-else statement)

#include <stdio.h>
int main()
{
int i = 20;
if (i< 15)
printf("i is smaller than 15");
else
printf("i is greater than 15");
return 0;
}

Output: i is greater than 15

Program 4:(if-else statement)
#include <stdio.h>
int main()
{
int age;
printf("Enter your age:");
scanf("%d",&age);
 if(age >=18)
{
/* This statement will only execute if the
 * above condition (age>=18) returns true
 */
printf("You are eligible for voting");
}
else
{
/* This statement will only execute if the
* condition specified in the "if" returns false. */
printf("You are not eligible for voting");
}
return 0;
}

Output: Enter your age:14 You are not eligible for voting

Program 5:(Nested-if statement)
#include <stdio.h>
int main()
{
 int var1, var2;
printf("Input the value of var1:");
scanf("%d", &var1);
printf("Input the value of var2:");

scanf("%d",&var2);
if (var1 != var2)
{
printf("var1 is not equal to var2\n");

//Nested if else
 if (var1 > var2)
{
printf("var1 is greater than var2\n");
}
else
{
printf("var2 is greater than var1\n");
}
}

Output:

Input the value of var1:12
Input the value of var2:21
var1 is not equal to var2
var2 is greater than var1

Program 6:(Nested-if statement)

#include <stdio.h>
int main()
{
int i = 10;
if (i == 10)
{
// First if statement
if (i< 15)
printf("i is smaller than 15\n");
// Nested - if statement will only be executed if statement above is true
if (i< 12)
printf("i is smaller than 12 too\n");
else
printf("i is greater than 15");
}
return 0;
}

Output:
i is smaller than 15
i is smaller than 12 too

Program 7:(if-else-if statement)

#include <stdio.h>
void main()
{
int i = 20;
if (i == 10)

printf("i is 10");
else if (i == 15)
printf("i is 15");
else if (i == 20)
printf("i is 20");
else
printf("i is not present");
}

Output:

i is 20

Program 8:(if-else-if statement)

#include <stdio.h>
int main()
{ int var1, var2;
printf("Input the value of var1:");
scanf("%d", &var1);
printf("Input the value of var2:");
scanf("%d",&var2);
if (var1 !=var2)
{
printf("var1 is not equal to var2\n");
}
else
if (var1 > var2)
{
printf("var1 is greater than var2\n");
}
else
if (var2 > var1)
{
printf("var2 is greater than var1\n");
}
else
{
printf("var1 is equal to var2\n");
}
return 0;
}

Output:

Input the value of var1:12
Input the value of var2:21
var1 is not equal to var2

'switch' statement in C

Consider a situation in which we have many options out of which we need to select only

one option that is to be executed. Such kind of problems can be solved using nested if
statement. But as the number of options increases, the complexity of the program also gets
increased. This type of problem can be solved very easily using a switch statement. Using the
switch statement, one can select only one option from more number of options very easily. In
the switch statement, we provide a value that is to be compared with a value associated with

each option. Whenever the given value matches the value associated with an option, the
execution starts from that option. In the switch statement, every option is defined as a case.

The switch statement has the following syntax and execution flow diagram.

The switch statement contains one or more cases and each case has a value associated
with it. At first switch statement compares the first case value with the switchValue, if it gets
matched the execution starts from the first case. If it doesn't match the switch statement
compares the second case value with the switch Value and if it is matched the execution starts
from the second case. This process continues until it finds a match. If no case value matches
with the switchValue specified in the switch statement, then a special case called default is
executed. When a case value matches with the switch Value, the execution starts from that
particular case. This execution flow continues with the next case statements also. To avoid this,
we use the "break" statement at the end of each case. That means the break statement is used
to terminate the switch statement. However, it is optional.

Examples:
Program 1:

#include<stdio.h>
#include<conio.h>
void main()
{
int n ;
clrscr() ;
printf("Enter any digit: ") ;
scanf("%d", &n) ;
switch(n)
{
case 0: printf("ZERO") ;

break ;
case 1:printf("ONE") ;
break ;
case 2:printf("TWO") ;

break ;
case 3: printf("THREE") ;
break ;
case 4: printf("FOUR") ;
break ;
case 5: printf("FIVE") ;
break ;
case 6: printf("SIX") ;
break ;
case 7: printf("SEVEN") ;
break ;
case 8: printf("EIGHT") ;
break ;
case 9: printf("NINE") ;
break ; default: printf("Not a Digit") ;
}
getch() ;
}

Output:

Enter any digit: 5
FIVE

Program 2:
#include <stdio.h>
int main()
{
int num=2;
switch(num+2)
{
case 1:printf("Case1: Value is: %d", num);
case 2:printf("Case2: Value is: %d", num);
case 3:printf("Case3: Value is: %d", num);
default:printf("Default: Value is: %d", num);
}
return 0;
}

Output: Default: value is: 2

Looping statements
Consider a situation in which we execute a single statement or block of statements

repeatedly for the required number of times. Such kind of problems can be solved using looping
statements in C. For example, assume a situation where we print a message 100 times. If we
want to perform that task without using looping statements, we have to either write 100 printf
statements or we have to write the same message 100 times in a single printf statement. Both
are complex methods. The same task can be performed very easily using looping statements.

The looping statements are used to execute a single statement or block of

statements repeatedly until the given condition is FALSE.

C language provides three looping statements...

 while statement

 do-while statement

 for statement

while Statement

The while statement is used to execute a single statement or block of statements
repeatedly as long as the given condition is TRUE. The while statement is also known as Entry
control looping statement. The while statement has the following syntax... The while statement
has the following execution flow diagram...

At first, the given condition is evaluated. If the condition is TRUE, the single statement or
block of statements gets executed. Once the execution gets completed the condition is
evaluated

again. If it is TRUE, again the same statements get executed. The same process is repeated
until the condition is evaluated to FALSE. Whenever the condition is evaluated to FALSE, the
execution control moves out of the while block.

Examples:
Program 1:

#include<stdio.h>
#include<conio.h>
void main()
{
int n = 0;
clrscr() ;
printf("Even numbers upto 10 are");
while(n<= 10)
{
if(n%2 == 0)
printf("%d\t", n) ;
n++ ;
}

getch() ;
}

Output:

Even numbers upto10 are0 2 4 6 8 10

Program 2:

#include <stdio.h>
int main()
{
int count=1;
while (count <= 4)
{
printf("%d ", count);
count++;
}
return 0;
}

Output:

1 2 3 4

'do-while' statement

The do-while statement is used to execute a single statement or block of statements
repeatedly as long as given the condition is TRUE. The do-while statement is also known as the
Exit control looping statement. The do-while statement has the following syntax...

The do-while statement has the following execution flow diagram...

At first, the single statement or block of statements which are defined in do block are

executed. After the execution of the do block, the given condition gets evaluated. If the condition
is evaluated to TRUE, the single statement or block of statements of do block are executed
again.

 Once the execution gets completed again the condition is evaluated. If it is TRUE, again

the same statements are executed. The same process is repeated until the condition is
evaluated to FALSE. Whenever the condition is evaluated to FALSE, the execution control
moves out of the while block.

Examples:
Program 1:

#include <stdio.h>
int main()
{
int j=0;
do
{
printf("Value of variable j is: %d\n", j);
j++;
}
while (j<=3);
return 0;
}

Output:
Value of variable j is: 0
Value of variable j is: 1
Value of variable j is: 2
Value of variable j is: 3

Program 2:

#include <stdio.h>
int main()
{
int i=0;
do
{
printf("while vs do-while\n");
}
while(i==1);
printf("Out of loop");
}

Output:
while vs do-while
Out of loop

'for' statement

 Thefor statement is used to execute a single
statement or a block of statements repeatedly as long as
the given condition is TRUE.The for statement has the
following syntax and execution flow diagram...

At first, the for statement executes initialization
followed by condition evaluation. If the condition is
evaluated to TRUE, the single statement or block of
statements of for statement are executed. Once the
execution gets completed, the modification statement is
executed and again the condition is evaluated. If it is TRUE,
again the same statements are executed. The same
process is repeated until the condition is evaluated to
FALSE. Whenever the condition is evaluated to FALSE, the
execution control moves out of the for block.

Examples:
Program 1:
// Print the naturalnumbers from 1 to 10

#include <stdio.h>
int main()
{
int i;
for (i = 1; i< 11; ++i)
{
printf("%d ", i);
}
return 0;
}

Output:

1 2 3 4 5 6 7 8 9 10

Program 2:

#include <stdio.h>
int main()
{
for (int i=0; i<2; i++)
{
for (int j=0; j<4; j++)
{
printf("%d, %d\n",i ,j);
}
}
return 0;
}

Output:

0, 0 0, 1 0, 2 0, 3 1, 0 1, 1 1, 2 1, 3

break, continue and goto in C
In c, there are control statements that do not need any condition to control the program

execution flow. These control statements are called as unconditional control statements. C
programming language provides the following unconditional control statements...

 break

 continue

 goto

The above three statements do not need any condition to control the program execution flow.

“break” statement

In C, the break statement is used to perform the following two things...

 break statement is used to terminate the switch case statement

 break statement is also used to terminate looping statements like while, do-while
and for.

When a break statement is encountered inside the switch case statement, the execution

control moves out of the switch statement directly. For example, consider the following program.

Examples:
Program 1:

#include<stdio.h>
#include<stdlib.h>
void main ()
{
int i;
for(i = 0; i<10; i++)
{
printf("%d ",i);
if(i == 5)
break;
}
printf("\ncame outside of loop i = %d",i);
}

Output:

0 1 2 3 4 5
came outside of loop i = 5

Program 2:

#include <stdio.h>
int main ()
{

/* local variable definition */
int a = 10;

/* while loop execution */
while(a< 20)
{

printf("value of a: %d\n", a);
a++;
if(a> 15)
{
break;

/* terminate the loop using break statement */
}
}
return 0;
}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

continue statement

The continue statement is used to move the program execution control to the beginning
of the looping statement. When the continue statement is encountered in a looping statement,
the execution control skips the rest of the statements in the looping block and directly jumps to
the beginning of the loop. The continue statement can be used with looping statements like
while, dowhile and for.

When we use continue statement with while and do-while statements the execution
control directly jumps to the condition. When we use continue statement with for statement the
execution control directly jumps to the modification portion (increment/decrement/any
modification) of the for loop.

Examples:
Program 1:

#include<stdio.h>
void main ()
{
int i = 0;
while(i!=10)
{
printf("%d", i);
continue;
i++;
}
}

Output:
Infinite loop

Program 2:

#include<stdio.h>
int main()
{

int i=1;//initializing a local variable
//starting a loop from 1 to 10

for(i=1;i<=10;i++)
{
if(i==5)
{ //if value of i is equal to 5, it will continue the loop
continue;
}
printf("%d \n",i);
} //end of for loop
return 0;
}

Output:

1
2
3
4
6
7
8
9
10

goto statement
The goto statement is used to jump from one line to another line in the program. Using

goto statement we can jump from top to bottom or bottom to top. To jump from one line to
another line, the goto statement requires a label. Label is a name given to the instruction or line
in the program. When we use a goto statement in the program, the execution control directly
jumps to the line with the specified label.

Examples:
Program 1:

#include <stdio.h>
void main()
{
int num,i=1;
printf("Enter the number whose table you want to print:");
scanf("%d",&num);
table: printf("%d x %d = %d\n",num,i,num*i);
i++;
if(i<=10)
goto table;
}

Output:
Enter the number whose table you want to print:10
10 x 1 = 10
10 x 2 = 20
10 x 3 = 30
10 x 4 = 40
10 x 5 = 50
10 x 6 = 60
10 x 7 = 70
10 x 8 = 80

10 x 9 = 90
10 x 10 = 100

Program 2:

#include <stdio.h>
void main()
{
int i, j, k;
for(i=0;i<10;i++)
{
 for(j=0;j<5;j++)
{
for(k=0;k<3;k++)
{
printf("%d %d %d\n",i,j,k);
if(j == 3)
{
goto out;
}
}

}
}
out:
printf("came out of the loop");
}

Output:

0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2
0 3 0
came out of the loop

6.5 Programming Assignments using the above features.

Some more Examples:
Program to Check Even or Odd

#include <stdio.h>
int main()
{
int num;
printf("Enter an integer: ");
scanf("%d", &num);
if(num % 2 == 0)// True if num is perfectly divisible by 2
printf("%d is even.", num);
else
printf("%d is odd.", num);
return 0;
}

Output

Enter an integer: 7
7 is odd.

Program to Check Vowel or consonant

#include <stdio.h>
int main()
{
char c;
 int lowercase_vowel, uppercase_vowel;
printf("Enter an alphabet: ");
scanf("%c", &c);
// evaluates to 1 if variable c is a lowercase vowel
lowercase_vowel = (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u');
// evaluates to 1 if variable c is a uppercase vowel
uppercase_vowel = (c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U');
// evaluates to 1 (true) if c is a vowel
if (lowercase_vowel || uppercase_vowel)
printf("%c is a vowel.", c);
 else
printf("%c is a consonant.", c);
return 0;
}

Output
Enter an alphabet: G
G is a consonant.

Program to Check Leap Year

#include <stdio.h>
int main()
{
int year;

printf("Enter a year: ");

scanf("%d", &year);
// leap year if perfectly visible by 400
if (year % 400 == 0)
{
printf("%d is a leap year.", year);
}
// not a leap year if visible by 100
// but not divisible by 400
else if (year % 100 == 0)
{
printf("%d is not a leap year.", year);
}
 // leap year if not divisible by 100
// but divisible by 4
else if (year % 4 == 0)
{
printf("%d is a leap year.", year);
}

// all other years are not leap year else
{
printf("%d is not a leap year.", year);
}
return 0;
}

Output
Enter a year: 1900
1900 is not a leap year

Program to Check Alphabet

#include <stdio.h>
int main()
{
char c;
printf("Enter a character: ");
scanf("%c", &c);
if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))
printf("%c is an alphabet.", c);
 else
 printf("%c is not an alphabet.", c);
return 0;
}

Output
Enter a character: *
* is not an alphabet

To find the Factorial of a Number

#include <stdio.h>
int main()
{
int n, i;
unsigned long long fact = 1;

printf("Enter an integer: ");

scanf("%d", &n);

// shows error if the user enters a negative integer
if (n < 0)
printf("Error! Factorial of a negative number doesn't exist.");
else
{
for (i = 1; i<= n; ++i)
{
fact *= i;
}
printf("Factorial of %d = %llu", n, fact);
}
return 0;
}

Output
Enter an integer: 5
Factorial of 10 = 120

Multiplication Table Up to 10

#include <stdio.h>
int main()
{
 int n, i;
 printf("Enter an integer: ");
 scanf("%d", &n);
 for (i = 1; i<= 10; ++i)
 {
 printf("%d * %d = %d \n", n, i, n * i);
 }
 return 0;
}

Output
Enter an integer: 9

9 * 1 = 9
9 * 2 = 18
9 * 3 = 27
9 * 4 = 36
9 * 5 = 45
9 * 6 = 54
9 * 7 = 63
9 * 8 = 72
9 * 9 = 81
9 * 10 = 90

To Reverse an Integer number

#include <stdio.h>
int main() {
 int n, rev = 0, remainder;
 printf("Enter an integer: ");
 scanf("%d", &n);

 while (n != 0) {

remainder = n % 10;
 rev = rev * 10 + remainder;
 n /= 10;
 }
 printf("Reversed number = %d", rev);
 return 0;
}

Output
Enter an integer: 2345

Reversed number = 5432

Program to Check Palindrome

#include <stdio.h>
int main()
{
 int n, reversedN = 0, remainder, originalN;
 printf("Enter an integer: ");
 scanf("%d", &n);
 originalN = n;
 // reversed integer is stored in reversedN
 while (n != 0) {
 remainder = n % 10;
 reversedN = reversedN * 10 + remainder;
 n /= 10;
 }
 // palindrome if orignalN and reversedN are equal
 if (originalN == reversedN)
 printf("%d is a palindrome.", originalN);
 else
 printf("%d is not a palindrome.", originalN);
 return 0;
}

Output
Enter an integer: 1001

 1001 is a palindrome.

Simple Calculator using switch Statement

#include <stdio.h>
int main()
{
 char operator;
 double first, second;
 printf("Enter an operator (+, -, *,): ");
 scanf("%c", &operator);
 printf("Enter two operands: ");
 scanf("%lf %lf", &first, &second);
 switch (operator)
 {
 case '+':printf("%.1lf + %.1lf = %.1lf", first, second, first + second);
 break;

 case '-':printf("%.1lf - %.1lf = %.1lf", first, second, first - second);
 break;
 case '*':printf("%.1lf * %.1lf = %.1lf", first, second, first * second);
 break;
 case '/':printf("%.1lf / %.1lf = %.1lf", first, second, first / second);
 break;
 default:printf("Error! operator is not correct");

 }
 return 0;
}

Output

Enter an operator (+, -, *,): *
Enter two operands: 1.54.5

 1.5 * 4.5 = 6.75

Solved Questions

Short Answer Type Questions.

Q.1 Name of the first developer of C programming languages.

Ans:- Dennis Ritchie

Q.2 What are the various types of statement available in C program?

Ans:- C has three types of statement.

(i) Assignment =

(ii) Selection (branching) if (expression) else switch.

(iii) Iteration (looping) while (expression)for(expression;expression;expression) do{block}

Q.3 What is the purpose of i/o statement in „C‟?
Ans:-

 It is used to display a string inputted by gets() function. It isalso used to display an text
(message) on the screen for program simplicity.

 Input Output Statement.

Q.4 Explain the importance of C-language?

Ans:-
C is highly portable and is used for scripting system applications which form a major part

of Windows, UNIX, and Linux operating system. C is a general-purpose programming language
and can efficiently work on enterprise applications, games, graphics, and applications requiring
calculations, etc.

Long Answer Type Questions.
Q.1 Give the general structure of a „C‟ program, and discuss about each of the lines.

(2017-Winter)
Ans:-

Programming in C is a difficult task for someone who is completely oblivious to the basic
structure of a C program. After completing this tutorial, you would learn how the Structure of C

Program looks like and soon you would be comfortable writing your own programs with ease!

Part of C program

1. # include <stdio.h> – This command is a preprocessor directive in C that includes all

standard input-output files before compiling any C program so
as to make use of all those functions in our C program.

2. int main() – This is the line from where the execution of the program starts.

The main() function starts the execution of any Program.

3. { (Opening bracket) – This indicates the beginning of any function in the program

(Here it indicates the beginning of the main function).

4. /* some comments */ – Whatever is inside /*——-*/ are not compiled and executed;

they are only written for user understanding or for making the
program interactive by inserting a comment line. These are
known as multiline comments. Single line comments are
represented with the help of 2 forward slashes ―//——‖.

5. printf(“Hello World”) –The printf() command is included in the C stdio.h library, which

helps to display the message on the output screen.

6. getch() – This command helps to hold the screen.
7. return 0 – This command terminates the C program and returns a null

value, that is, 0.
8. } (Closing brackets)- This indicates the end of the function. (Here it indicates the end

of the main function)

Q.2 WAP in C to find the real roots of a quadratic equation. (2017-Summer)
Ans:-

#include <stdio.h>
#include <math.h>
int main()
{
 int a, b, c, d;
 double root1, root2;
 printf("Enter a, b and c where a*x*x + b*x + c = 0\n");
 scanf("%d%d%d", &a, &b, &c);
 d = b*b - 4*a*c;
 if (d < 0)
{
// complex roots, i is for iota (√-1, square root of -1)
printf("First root = %.2lf + i%.2lf\n", -b/(double)(2*a), sqrt(-d)/(2*a));
printf("Second root = %.2lf - i%.2lf\n", -b/(double)(2*a), sqrt(-d)/(2*a));
 }
 else
{
// real roots
root1 = (-b + sqrt(d))/(2*a);
root2 = (-b - sqrt(d))/(2*a);
printf("First root = %.2lf\n", root1);
printf("Second root = %.2lf\n", root2);
}
 return 0;

}

EXERCISE

Short Answer Type Questions.

Q. 1 Differentiate between Numeric and Character Constant?

Q. 2 How can you use a symbolic statement?

Q. 3 What do you mean by operator and operand?

Q. 4 What are the various types of Operator used in the C programming?

(2016-Summer)

Q. 5 Differentiate between logical and bitwise operator?

Q. 6 Differentiate between increment and decrement operator?

Q. 7 Differentiate between pre and post increment/decrement operator? (2013-

Summer)

Q. 8 Differentiate between unary plus and unary minus operator?

Q. 9 Why conditional operator is called ternary operator?

Q. 10 Define Operator?

Q. 11 What is the relation of arithmetic operator with relational operator?

Explain with an appropriate expression?

Q. 12 How can expression with increment and decrement operators will be

solved?

Q. 13 Differentiate between if-else and else-if statement?

Q. 14 Differentiate between ladder if and switch statement? (2017-Summer)

Q. 15 What do you mean by conditional control statement?

Q. 16 Define an iterative statement in a C program.

Q. 17 Give the general syntax of switch…… case statement in C.

Q. 18 Differentiate between do-while and while….. do statement in C.

Long Answer Type Questions

Q. 1 WAP in C to print all 2-Digit Odd Numbers.

Q. 2 WAP in C to Calculate and print the factorial of a given number.

Q. 3 WAP in C to Compute and print the sum of the following series. (2017-

Winter)

S= 1 + 1/x + 1/x2 + 1/x3 + 1/x4………… 1/xn

Q. 4 WAP in C to calculate the sum of the digits of a given number.

Q. 5 WAP in C to Compute and print the simple interest and compound

interest.

Q. 6 WAP in C to compute (a+b)2.

Q. 7 WAP in C to interchange value of two variables without using third

variable.

Q. 8 WAP in to find the sum of the given series. (2015-Winter)

1n + 2n + 3n + 4n + ……………..mn.

Q. 9 WAP in C to print.

*

**

Q. 10 WAP in C to find the prime number. (2017-Summer)

Q. 11 WAP in C to find greatest number among three integer numbers. (2015-

Winter)

Q. 12 WAP in C to compute and print the sum of the following series. (2017-

Winter)

𝟐

𝟐

Q. 13 WAP in C to find whether a number is Armstrong number or not.

CHAPTER –7: ADVANCED FEATURES OF C

7.1 Functions and Passing Parameters to the Function (Call by Value and

Call by Reference)

Functions

 A function is a group of statements that together perform a task. Every C program has at

least one function, which is main (), and all the most trivial programs can define additional

functions.

 You can divide up your code into separate functions. How you divide up your code

among different functions is up to you, but logically the division is such that each function

performs a specific task.

 A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

 A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

 The general form of a function definition in C programming language is as follows −

o return type function name(parameter list) {

o body of the function

o }

 A function definition in C programming consists of a function header and a function body.

Here are all the parts of a function −

o Return Type − A function may return a value. The return type is the data type of

the value the function returns. Some functions perform the desired operations

without returning a value. In this case, the return type is the keyword void.

o Function Name − This is the actual name of the function. The function name and

the parameter list together constitute the function signature.

o Parameters − A parameter is like a placeholder. When a function is invoked, you

pass a value to the parameter. This value is referred to as actual parameter or

argument. The parameter list refers to the type, order, and number of the

parameters of a function. Parameters are optional; that is, a function may contain

no parameters.

o Function Body − The function body contains a collection of statements that define

what the function does.

Parameters in C functions

 A Parameter is the symbolic name for "data" that goes into a function. There are two

ways to pass parameters in C: Pass by Value, Pass by Reference.

Call by Value

o Pass by Value, means that a copy of the data is made and stored by way of the

name of the parameter. Any changes to the parameter have NO effect on data in

the calling function.

o In call by value method, the value of the actual parameters is copied into the

formal parameters. In other words, we can say that the value of the variable is

used in the function call in the call by value method.

o In call by value method, we cannot modify the value of the actual parameter by the

formal parameter.

o In call by value, different memory is allocated for actual and formal parameters

since the value of the actual parameter is copied into the formal parameter.

o The actual parameter is the argument which is used in the function call whereas

formal parameter is the argument which is used in the function definition.

Call by Reference
o A reference parameter "refers" to the original data in the calling function. Thus,

any changes made to the parameter are also made to the original variable.

o In call by reference, the address of the variable is passed into the function call as

the actual parameter.

o The value of the actual parameters can be modified by changing the formal

parameters since the address of the actual parameters is passed.

o In call by reference, the memory allocation is similar for both formal parameters

and actual parameters. All the operations in the function are performed on the

value stored at the address of the actual parameters, and the modified value gets

stored at the same address.

 There are two ways to make a pass by reference parameter:

ARRAYS
o Arrays are always pass by reference in C. Any change made to the parameter

containing the array will change the value of the original array.

The ampersand (&) used in the function prototype. Function (& parameter name)
o To make a normal parameter into a pass by reference parameter, we use the "&

param" notation. The ampersand (&) is the syntax to tell C that any changes made

to the parameter also modify the original variable containing the data.

Call by Value Example: Swapping the values of the two variables (Swapping not
Possible)

#include <stdio.h>
void swap(int , int); //prototype of the function
int main()
{
 int a = 10;
 int b = 20;
 printf("Before swapping the values in main a = %d, b = %d\n",a,b);
 swap(a,b);
 printf("After swapping values in main a = %d, b = %d\n",a,b);
// The value of actual parameters do not change by changing the formal parameters in
call by value, a = 10, b = 20
}

void swap (int a1, int b1)
{
 int temp;
 temp = a;

 a=b;
 b=temp;
printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a
= 20, b = 10
}

Output

Before swapping the values in main a = 10, b = 20
After swapping values in function a = 20, b = 10
After swapping values in main a = 10, b = 20

Call by reference Example:
Swapping the values of the two variables

#include <stdio.h>
void swap(int *, int *); //prototype of the function
int main()
{
 int a = 10;
 int b = 20;
 printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value
of a and b in main
 swap(&a,&b);
 printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual
parameters do change in call by reference, a = 10, b = 20
}
 void swap (int *a, int *b)
{
 int temp;
 temp = *a;
 *a=*b;
 *b=temp;
printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters,
a = 20, b = 10
}

Output:

Before swapping the values in main a = 10, b = 20
After swapping values in function a = 20, b = 10
After swapping values in main a = 20, b = 10

7.2 Scope of Variables and Storage Classes, Recursion, Function and
Types of Recursion

7.2.1 Scope of variables

 When we declare a variable in a program, it cannot be accessed against the scope rules.

Variables can be accessed based on their scope. The scope of a variable decides the

portion of a program in which the variable can be accessed. The scope of the variable is

defined as follows...

 Scope of a variable is the portion of the program where a defined variable can be

accessed.

 The variable scope defines the visibility of variable in the program. Scope of a variable

depends on the position of variable declaration.

 In C programming language, a variable can be declared in three different positions and

they are as follows...

o Before the function definition (Global Declaration)

o Inside the function or block (Local Declaration)

o In the function definition parameters (Formal Parameters)

Before the function definition (Global Declaration)

Example Program

#include<stdio.h>
#include<conio.h>
int num1, num2 ;
void main()
{
void addition() ;
void subtraction() ;
void multiplication() ;
clrscr() ;
num1 = 10 ;
num2 = 20 ;
printf("num1 = %d, num2 = %d", num1, num2) ;
addition() ;
subtraction() ;
multiplication() ;
getch() ;
}
void addition()
{
int result ;
result = num1 + num2 ;
printf("\naddition = %d", result) ;
}

void subtraction()
{
int result ;
result = num1 - num2 ;
printf("\nsubtraction = %d", result) ;
}
void multiplication()
{
int result ;
result = num1 * num2 ;
printf("\nmultiplication = %d", result) ;
}

Output:
Inside the function or block (Local Declaration)

Example Program

#include<stdio.h>

#include<conio.h>

void main()

{

void addition() ;

int num1, num2 ;

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("num1 = %d, num2 = %d", num1, num2) ;

addition() ;

getch() ;

}

void addition()

{

int sumResult ;

sumResult = num1 + num2 ;

printf("\naddition = %d", sumResult) ;

}

Output:
In the function definition parameters (Formal Parameters)

Example Program

#include<stdio.h>

#include<conio.h>

void main()

{

void addition(int, int) ;

int num1, num2 ;

clrscr() ;

num1 = 10 ;

num2 = 20 ;

addition(num1, num2) ;

getch() ;

}

void addition(int a, int b)

{

int sumResult ;

sumResult = a + b ;

printf("\naddition = %d", sumResult) ;

}

7.2.2 Storage Classes

 Storage classes in C are used to determine the lifetime, visibility, memory location, and

initial value of a variable. There are four types of storage classes in C

o Automatic

o External

o Static

o Register

Automatic

 Automatic variables are allocated memory automatically at runtime.

 The visibility of the automatic variables is limited to the block in which they are defined.

 The scope of the automatic variables is limited to the block in which they are defined.

 The automatic variables are initialized to garbage by default.

 The memory assigned to automatic variables gets freed upon exiting from the block.

 The keyword used for defining automatic variables is auto.

 Every local variable is automatic in C by default.

Example

#include <stdio.h>

int main()

{

int a; //auto

char b;

float c;

printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.

return 0;

}

Output:

garbage garbagegarbage

Static

 The variables defined as static specifier can hold their value between the multiple

function calls.

 Static local variables are visible only to the function or the block in which they are

defined.

 A same static variable can be declared many times but can be assigned at only one time.

 Default initial value of the static integral variable is 0 otherwise null.

 The visibility of the static global variable is limited to the file in which it has declared.

 The keyword used to define static variable is static.

Example

#include<stdio.h>

static char c;

static int i;

static float f;

static char s[100];

void main ()

{

printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.

}

Output:

0 0 0.000000 (null)

Register

 The variables defined as the register is allocated the memory into the CPU registers

depending upon the size of the memory remaining in the CPU.

 We cannot dereference the register variables, i.e., we cannot use &operator for the

register variable.

 The access time of the register variables is faster than the automatic variables.

 The initial default value of the register local variables is 0.

 The register keyword is used for the variable which should be stored in the CPU register.

However, it is compiler‘s choice whether or not; the variables can be stored in the

register.

 We can store pointers into the register, i.e., a register can store the address of a variable.

 Static variables cannot be stored into the register since we cannot use more than one

storage specifier for the same variable.

Example

#include <stdio.h>

int main()

{

 register int a; // variable a is allocated memory in the CPU register. The initial default

value of a is 0.

printf("%d",a);

}

Output:
0

External

 The external storage class is used to tell the compiler that the variable defined as extern

is declared with an external linkage elsewhere in the program.

 The variables declared as extern are not allocated any memory. It is only declaration and

intended to specify that the variable is declared elsewhere in the program.

 The default initial value of external integral type is 0 otherwise null.

 We can only initialize the extern variable globally, i.e., we can not initialize the external

variable within any block or method.

 An external variable can be declared many times but can be initialized at only once.

 If a variable is declared as external then the compiler searches for that variable to be

initialized somewhere in the program which may be extern or static. If it is not, then the

compiler will show an error.

Example

#include <stdio.h>

int main()

{

 extern int a;

 printf("%d",a);

}

Output

main.c:(.text+0x6): undefined reference to `a'

collect2: error: ld returned 1 exit status

7.2.3 Recursion Function

 Recursion is the process of repeating items in a self-similar way. In programming

languages, if a program allows you to call a function inside the same function, then it is

called a recursive call of the function.

void recursion()

{

recursion (); /* function calls itself */

}

int main() {

recursion ();

}

 The C programming language supports recursion, i.e., a function to call itself. But while

using recursion, programmers need to be careful to define an exit condition from the

function, otherwise it will go into an infinite loop.

 Recursive functions are very useful to solve many mathematical problems, such as

calculating the factorial of a number, generating Fibonacci series, etc.

7.2.4 Types of Recursion

 Recursion are mainly of two types depending on weather a function calls itself
from within itself weather two function call one another mutually.

 Thus, the two types of recursion are:

 Direct recursion

 Indirect recursion
 Recursion may be further categorized as:

 Linear recursion

 Binary recursion

 Multiple recursion

7.3 One Dimensional Array and Multidimensional Array, String Operations
and Pointers

7.3.1 One-dimensional array

 Conceptually you can think of a one-dimensional array as a row, where elements are

stored one after another.

 Syntax: data type array_name[size];

 datatype: It denotes the type of the elements in the array.

 array_name: Name of the array. It must be a valid identifier.

 size: Number of elements an array can hold. here are some example of array

declarations:

int num[100];

float temp[20];

char ch[50];

7.3.2 Multidimensional Arrays

 The simplest form of multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size [x][y], you would write something as follows −

type array Name [x][y];

 Where type can be any valid C data type and array Name will be a valid C identifier.

 A two-dimensional array can be considered as a table which will have x number of rows

and y number of columns.

 A two-dimensional array a, which contains three rows and four columns can be shown as

follows –

 Thus, every element in the array a is identified by an element name of the form a[i][j],

where 'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely identify

each element in 'a'.

7.3.3 String operations

 Strings are actually one-dimensional array of characters terminated by a null character

'\0'. Thus a null-terminated string contains the characters that comprise the string

followed by a null.

 The following declaration and initialization create a string consisting of the word "Hello".

To hold the null character at the end of the array, the size of the character array

containing the string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 If you follow the rule of array initialization then you can write the above statement as
follows −

char greeting[] = "Hello";

 Following is the memory presentation of the above defined string in C/C++ −

 Actually, you do not place the null character at the end of a string constant. The C

compiler automatically places the '\0' at the end of the string when it initializes the array.

Let us try to print the above mentioned string − Live Demo

#include <stdio.h>
int main ()
{
 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
 printf("Greeting message: %s\n", greeting);
 return 0;
}

7.3.4 Pointers

 A pointer is a variable whose value is the address of another variable, i.e., direct address

of the memory location. Like any variable or constant, you must declare a pointer before

using it to store any variable address. The general form of a pointer variable declaration

is −

type *var-name;

 Here, type is the pointer's base type; it must be a valid C data type and var-name is the

name of the pointer variable. The asterisk * used to declare a pointer is the same asterisk

used for multiplication.

How to Use Pointers?

 There are a few important operations, which we will do with the help of pointers very

frequently.

 We define a pointer variable,

 assign the address of a variable to a pointer and

 Finally access the value at the address available in the pointer variable.

 This is done by using unary operator * that returns the value of the variable located at the

address specified by its operand. The following example makes use of these operations

–

#include <stdio.h>

int main () {

int var = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);

return 0;

}

7.4 Pointer Expression and Pointer Arithmetic Programming, Assignments

using the above features.

 Pointers are used to point to address the location of a variable. A pointer is declared by

preceding the name of the pointer by an asterisk (*).

 Syntax:

datatype *pointer_name;

 When we need to initialize a pointer with variable‘s location, we use ampersand sign(&)

before the variable name.

// Declaration of integer variable

int var=10;

// Initialization of pointer variable

int *pointer=&var;

 The ampersand (&) is used to get the address of a variable. We can directly find the

location of any identifier by just preceding it with an ampersand (&) sign.

Example:

// This code prints the address of x

#include <stdio.h>

int main()

{

 int x = 10;

// Prints address of x

 printf("Address of variable x = %p", &x);

 return 0;

}

Pointer Arithmetic Programming
Pointer in c is an address, which is a numeric value. Therefore, you can perform

arithmetic operations on a pointer just as you can on a numeric value. There are four arithmetic
operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which

points to the address 1000. Assuming 32-bit integers, let us perform the following arithmetic
operation on the pointer −ptr++

After the above operation, the ptr will point to the location 1004 because each time ptr is

incremented, it will point to the next integer location which is 4 bytes next to the current location.
This operation will move the pointer to the next memory location without impacting the actual
value at the memory location. If ptr points to a character whose address is 1000, then the above
operation will point to the location 1001 because the next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer. The following program increments the variable pointer to access each
succeeding element of the array −

#include <stdio.h>

const int MAX = 3;

void main ()

{

 int var[] = {10, 100, 200};

 int i, *ptr;

 ptr = var; /* let us have array address in pointer */

 for (i = 0; i< MAX; i++)

 {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 ptr++; /* move to the next location */

 }

}

Output
Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by
the number of bytes of its data type as shown below −

#include <stdio.h>

const int MAX = 3;

int main ()

{

 int var[] = {10, 100, 200};

 int i, *ptr;

 ptr = &var[MAX-1];/* let us have array address in pointer */

 for (i = MAX; i> 0; i--)

 {

 printf("Address of var[%d] = %x\n", i-1, ptr);

 printf("Value of var[%d] = %d\n", i-1, *ptr);

 ptr--;/* move to the previous location */

 }

 return 0;

}

Output

Address of var[2] = bfedbcd8

Value of var[2] = 200

Address of var[1] = bfedbcd4

Value of var[1] = 100

Address of var[0] = bfedbcd0

Value of var[0] = 10

Pointer Comparisons
Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and

p2 point to variables that are related to each other, such as elements of the same array, then p1
and p2 can be meaningfully compared.

The following program modifies the previous example − one by incrementing the variable

pointer so long as the address to which it points is either less than or equal to the address of the
last element of the array, which is &var[MAX - 1] −

Example

#include <stdio.h>

const int MAX = 3;

int main ()

{

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have address of the first element in pointer */

 ptr = var;

 i = 0;

 while (ptr<= &var[MAX - 1])

 {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* point to the next location */

 ptr++;

 i++;

 }

 return 0;

}

Output

Address of var[0] = bfdbcb20

Value of var[0] = 10

Address of var[1] = bfdbcb24

Value of var[1] = 100

Address of var[2] = bfdbcb28

Value of var[2] = 200

7.5 Structure and Union (Only concepts, No Programming)

 What is a structure?

A structure is a user defined data type in C. A structure creates a data type that can be
used to group items of possibly different types into a single type.

How to create a structure?

―struct‖ keyword is used to create a structure.

Following is an example

struct address

{

 char name[50];

 char street[100];

 char city[50];

 char state[20];

 int pin;

};

How to declare structure variables?

 A structure variable can either be declared with structure declaration or as a separate

declaration like basic types.

 A variable declaration with structure declaration.

struct Point

{

 int x, y;

} p1;

 The variable p1 is declared with 'Point'.

 A variable declaration like basic data types

struct Point

{

 int x, y;

};

int main()

{

 struct Point p1; // The variable p1 is declared like a normal variable

}

Union

 A union is a special data type available in C that allows storing different data types in the

same memory location.

 You can define a union with many members, but only one member can contain a value at

any given time.

 Unions provide an efficient way of using the same memory location for multiple purposes.

Defining a Union:

 To define a union, you must use the union statement in the same way as you did while

defining a structure.

 The union statement defines a new data type with more than one member for your

program.

 The format of the union statement is as follows:

union [union name]

{

member definition;

member definition;

...

member definition;

 };

Standard Library Functions

 Many basic housekeeping functions are available to a C program in form of
standard library functions. To call these, a program must #include the appropriate .h file. Most
compilers link in the standard library code by default. The functions listed in the next section are

the most commonly used ones, but there are many more which are not listed here.

stdio.h file input and output

ctype.h charactertests

string.h stringoperations

math.h mathematical functions such as sin() and cos()

stdlib.h utility functions such as malloc() andrand()

assert.h the assert() debugging macro

stdarg.h support for functions with variable numbers of arguments

setjmp.h support for non-local flow controljumps

signal.h support for exceptional conditionsignals

time.h date andtime

limits.h, float.h constants which define type range values such asINT_MAX

Examples of advance programming in C
Example of Array In C programming to find out the average of 4 integers

#include <stdio.h>

int main()

{

 int avg = 0;

 int sum =0;

 int x=0;

 int num[4];/* Array- declaration – length 4*/

 for (x=0; x<4;x++)/* We are using for loop to traverse through the */

 {

 printf("Enter number %d \n", (x+1));

 scanf("%d", &num[x]);

 }

 for (x=0; x<4;x++)

 {

 sum = sum+num[x];

 }

 avg = sum/4;

 printf("Average of entered number is: %d", avg);

 return 0;

}

Output:
Enter number 1

10

Enter number 2

10

Enter number 3

20

Enter number 4

40

Average of entered number is: 20

Example to print the address of array elements

#include <stdio.h>

int main()

{

 int val[7] = { 11, 22, 33, 44, 55, 66, 77 } ;

 /* for loop to print value and address of each element of array*/

 for (inti = 0 ; i< 7 ; i++)

 {

 printf("val[%d]: value is %d and address is %d\n", i, val[i], &val[i]);

 }

 return 0;

}

Output:
val[0]: value is 11 and address is 1423453232
val[1]: value is 22 and address is 1423453236
val[2]: value is 33 and address is 1423453240
val[3]: value is 44 and address is 1423453244
val[4]: value is 55 and address is 1423453248
val[5]: value is 66 and address is 1423453252
val[6]: value is 77 and address is 1423453256

Example: Passing Pointer to a Function in C

#include <stdio.h>

void salaryhike(int *var, int b)

{

 *var = *var+b;

}

int main()

{

 int salary=0, bonus=0;

 printf("Enter the employee current salary:");

 scanf("%d", &salary);

 printf("Enter bonus:");

 scanf("%d", &bonus);

 salaryhike(&salary, bonus);

 printf("Final salary: %d", salary);

 return 0;

}

Output:
Enter the employee current salary:10000
Enter bonus:2000
Final salary: 12000

Example for Swapping two numbers using Pointers

#include <stdio.h>

void swapnum(int *num1, int *num2)

{

 int tempnum;

tempnum = *num1;

 *num1 = *num2;

 *num2 = tempnum;

}

int main()

{

 int v1 = 11, v2 = 77 ;

 printf("Before swapping:");

 printf("\nValue of v1 is: %d", v1);

 printf("\nValue of v2 is: %d", v2);

 /*calling swap function*/

 swapnum(&v1, &v2);

 printf("\nAfter swapping:");

 printf("\nValue of v1 is: %d", v1);

 printf("\nValue of v2 is: %d", v2);

}

Output:
Before swapping:
Value of v1 is: 11
Value of v2 is: 77
After swapping:
Value of v1 is: 77
Value of v2 is: 11

Example: Program to find the size of an array

#include <stdio.h>

int main()

{

 double arr[] = {11, 22, 33, 44, 55, 66};

 int n;

 /* Calculating the size of the array with this formula.

 * n = sizeof(array_name) / sizeof(array_name[0])

 * This is a universal formula to find number of elements in

 * an array, which means it will work for arrays of all data

 * types such as int, char, float etc.

 */

 n = sizeof(arr) / sizeof(arr[0]);

 printf("Size of the array is: %d\n", n);

 return 0;

}

Output:
Size of the array is: 6

Example: Program to Calculate Standard Deviation

#include <math.h>

#include <stdio.h>

float calculateSD(float data[]);

int main()

{

 int i;

 float data[10];

 printf("Enter 10 elements: ");

 for (i = 0; i< 10; ++i)

 scanf("%f", &data[i]);

 printf("\nStandard Deviation = %.6f", calculateSD(data));

 return 0;

}

float calculateSD(float data[])

{

 float sum = 0.0, mean, SD = 0.0;

 int i;

 for (i = 0; i< 10; ++i)

 {

 sum += data[i];

 }

 mean = sum / 10;

 for (i = 0; i< 10; ++i)

 SD += pow(data[i] - mean, 2);

 return sqrt(SD / 10);

}

Output Enter 10 elements: 1

2
3
4
5
6
7
8
9
10
Standard Deviation = 2.872281

Example: Program to Add Two Matrices

#include <stdio.h>

int main()

{

 int r, c, a[100][100], b[100][100], sum[100][100], i, j;

 printf("Enter the number of rows (between 1 and 100): ");

 scanf("%d", &r);

 printf("Enter the number of columns (between 1 and 100): ");

 scanf("%d", &c);

 printf("\nEnter elements of 1st matrix:\n");

 for (i = 0; i< r; ++i)

 for (j = 0; j < c; ++j)

 {

 printf("Enter element a%d%d: ", i + 1, j + 1);

 scanf("%d", &a[i][j]);

 }

 printf("Enter elements of 2nd matrix:\n");

 for (i = 0; i< r; ++i)

 for (j = 0; j < c; ++j)

 {

 printf("Enter element a%d%d: ", i + 1, j + 1);

 scanf("%d", &b[i][j]);

 }

 for (i = 0; i< r; ++i)// adding two matrices

 for (j = 0; j < c; ++j)
 sum[i][j] = a[i][j] + b[i][j];
 printf("\nSum of two matrices: \n"); // printing the result
 for (i = 0; i< r; ++i)
 for (j = 0; j < c; ++j)
 {

 printf("%d ", sum[i][j]);

 if (j == c - 1)

 {

 printf("\n\n");

 }

 }

 return 0;

 }

Output
Enter the number of rows (between 1 and 100): 2
Enter the number of columns (between 1 and 100): 3
Enter elements of 1st matrix:
Enter element a11: 2
Enter element a12: 3
Enter element a13: 4
Enter element a21: 5
Enter element a22: 2
Enter element a23: 3
Enter elements of 2nd matrix:
Enter element a11: -4
Enter element a12: 5
Enter element a13: 3
Enter element a21: 5
Enter element a22: 6
Enter element a23: 3
Sum of two matrices:

-2 8 7
10 8 6

Example: Multiply Matrices by Passing it to a Function

#include <stdio.h>

// function to get matrix elements entered by the user

void getMatrixElements(int matrix[][10], int row, int column)

{

 printf("\nEnter elements: \n");

 for (int i = 0; i< row; ++i)

 {

 for (int j = 0; j < column; ++j)

 {

 printf("Enter a%d%d: ", i + 1, j + 1);

 scanf("%d", &matrix[i][j]);

 }

 }

}

// function to multiply two matrices

void multiplyMatrices(int first[][10],int second[][10], int result[][10], int r1, int c1, int

r2, int c2)

{

 // Initializing elements of matrix mult to 0.

 for (int i = 0; i< r1; ++i)

 {

 for (int j = 0; j < c2; ++j)

 {

 result[i][j] = 0;

 }

 }

 // Multiplying first and second matrices and storing it in result

 for (int i = 0; i< r1; ++i) {

 for (int j = 0; j < c2; ++j) {

 for (int k = 0; k < c1; ++k) {

 result[i][j] += first[i][k] * second[k][j];

 }

 }

 }

}

// function to display the matrix

void display(int result[][10], int row, int column) {

 printf("\nOutput Matrix:\n");

 for (int i = 0; i< row; ++i) {

 for (int j = 0; j < column; ++j) {

 printf("%d ", result[i][j]);

 if (j == column - 1)

 printf("\n");

 }

 }

}

int main()

{

 int first[10][10], second[10][10], result[10][10], r1, c1, r2, c2;

 printf("Enter rows and column for the first matrix: ");

 scanf("%d %d", &r1, &c1);

 printf("Enter rows and column for the second matrix: ");

 scanf("%d %d", &r2, &c2);

 // Taking input until

 // 1st matrix columns is not equal to 2nd matrix row

 while (c1 != r2)

 {

 printf("Error! Enter rows and columns again.\n");

 printf("Enter rows and columns for the first matrix: ");

 scanf("%d%d", &r1, &c1);

 printf("Enter rows and columns for the second matrix: ");

 scanf("%d%d", &r2, &c2);

 }

 getMatrixElements(first, r1, c1);// get elements of the first matrix

 getMatrixElements(second, r2, c2); // get elements of the second matrix

 multiplyMatrices(first, second, result, r1, c1, r2, c2); // multiply two matrices.

 display (result, r1, c2);// display the result

 return 0;

}

Output
Enter rows and column for the first matrix: 2
3
Enter rows and column for the second matrix: 3
2

Enter elements:
Enter a11: 2
Enter a12: -3
Enter a13: 4
Enter a21: 53
Enter a22: 3
Enter a23: 5

Enter elements:
Enter a11: 3
Enter a12: 3
Enter a21: 5
Enter a22: 0

Enter a31: -3
Enter a32: 4

Output Matrix:
-21 22

159 179

Example: Program to Find the Transpose of a Matrix

#include <stdio.h>

int main()

{

 int a[10][10], transpose[10][10], r, c, i, j;

 printf("Enter rows and columns: ");

 scanf("%d %d", &r, &c);

 // Assigning elements to the matrix

 printf("\nEnter matrix elements:\n");

 for (i = 0; i< r; ++i)

 for (j = 0; j < c; ++j)

 {

 printf("Enter element a%d%d: ", i + 1, j + 1);

 scanf("%d", &a[i][j]);

 }

 // Displaying the matrix a[][]

 printf("\nEntered matrix: \n");

 for (i = 0; i< r; ++i)

 for (j = 0; j < c; ++j)

 {

 printf("%d ", a[i][j]);

 if (j == c - 1)

 printf("\n");

 }

// Finding the transpose of matrix A

 for (i = 0; i< r; ++i)

 for (j = 0; j < c; ++j)

 {

 transpose[j][i] = a[i][j];

 }

 // Displaying the transpose of matrix a

 printf("\nTranspose of the matrix:\n");

 for (i = 0; i< c; ++i)

 for (j = 0; j < r; ++j)

 {

 printf("%d ", transpose[i][j]);

 if (j == r - 1)

 printf("\n");

 }

 return 0;

}

Output
Enter rows and columns: 2
3
Enter matrix elements:
Enter element a11: 1
Enter element a12: 4
Enter element a13: 0
Enter element a21: -5
Enter element a22: 2
Enter element a23: 7

Entered matrix:
1 4 0
-5 2 7

Transpose of the matrix:
1 -5
4 2
0 7

Using Call by Reference
#include <stdio.h>

void cyclicSwap(int *a, int *b, int *c);

int main()

{

 int a, b, c;

 printf("Enter a, b and c respectively: ");

 scanf("%d %d %d", &a, &b, &c);

 printf("Value before swapping:\n");

 printf("a = %d \nb = %d \nc = %d\n", a, b, c);

 cyclicSwap(&a, &b, &c);

 printf("Value after swapping:\n");

 printf("a = %d \nb = %d \nc = %d", a, b, c);

 return 0;

}

void cyclicSwap(int *n1, int *n2, int *n3)

{

 int temp;

 // swapping in cyclic order

 temp = *n2;

 *n2 = *n1;

 *n1 = *n3;

 *n3 = temp;

}

Output
Enter a, b and c respectively: 1
2
3
Value before swapping:
a = 1
b = 2
c = 3
Value after swapping:
a = 3
b = 1
c = 2

Solved Questions

Short Answer Type Questions.

Q.1 What is an array? What is its importance in C? (2015-Summer)

Ans:-
Arrays a kind of data structure that can store a fixed-size sequential collection of

elements of the same type. An array is used to store a collection of data, but it is often more
useful to think of an array as a collection of variables of the same type.

Q.2 What is a single dimensional array? How can it be initialized?

Ans:-
1D Arrays in C language – A list of items can be given one variable name using only one

subscript and such a variable is called single sub-scripted variable or one dimensional array.

Q.3 What are the various string operations?

Ans:-
strcat - concatenate two strings. strchr -string scanning operation. strcmp - compare two

strings. strcpy -copy a string.

Q.4 How can you reverse a string?
Ans:- C program to reverse a string

int main()

{

char s[100];

printf("Enter a string to reverse\n"); gets(s);

strrev(s);

printf("Reverse of the string: %s\n", s);

return 0;

}

Long Answer Type Questions.
Q.1 Write a program to find the sum of even numbers of an array? (2017-Summer)
Ans:

#include<stdio.h>

main()

{

 int a[10],i,sum=0;

printf("Enter upto 5 Values: ");

for(i=0; i<5; i++)

scanf("%d",&a[i]);

for(i=0; i<5; i++)

{

if(a[i]%2==0)

sum=sum+a[i];

 }

printf("Total Sum of Even values is: %d ",sum);

getch();

}

Output :
Enter upto 5 Values: 2 3 5 4 7
Total Sum of Even values is: 6

Q.2 Write a program which prints the smallest element?
Ans:

#include<stdio.h>

int main()

{

 int a[30], i, num, smallest;

 printf("\nEnter no of elements :");

 scanf("%d", &num);

 //Read n elements in an array

 for (i = 0; i< num; i++)

 scanf("%d", &a[i]);

 //Consider first element as smallest

 smallest = a[0];

 for (i = 0; i< num; i++)

 {

 if (a[i] < smallest)

 {

 smallest = a[i];

 }

 }

 // Print out the Result

 printf("\nSmallest Element : %d", smallest);

 return (0);

}

Output:

Enter no of elements : 5
11 44 22 55 99
Smallest Element : 11

EXERCISE

Short Answer Type Questions.

Q. 1 What is a multi-dimensional array? How is it initialized? (2017-Summer)

Q. 2 How can a two-dimensional array be declared in C program?

Q. 3 What is built-in function? Give some example of these functions?

Q. 4 Give some examples of Function Prototypes?

Q. 5 Differentiate between strcat() and strcpy()?

Q. 6 How can you apply arithmetic operations on strings?

Q. 7 How is a structure different or similar from/to an array?

Q. 8 How can you create structure variables? (2015-Summer)

Q. 9 How can you define array within structures?

Q. 10 Define a union? (2014-Winter)

Q. 11 How can you declare a union?

Q. 12 Define a pointer? (2015-Winter) (2016-Winter)

Q. 13 What is the relation between pointers and arrays? (2015-Summer)

Q. 14 What is the function of malloc() library function?

Q. 15 What is the meaning of reference?

Q. 16 What is address operator?

Q. 17 Give an example of pointer initialization?

Q. 18 Briefly explain the association between one dimensional arrays and pointers?

Q. 19 Explain the relation between pointers and functions?

Long Answer Type Questions

Q. 1 Write a program which replaces every blank space in a string with underscore?

Q. 2 How can you calculate the size of an array? Illustrate with the help of example. (2014-

Summer)

Q. 3 How we can call a function by

i. Reference

ii. Value

Q. 4 Write a C program which illustrates passing of arguments by reference? (2016-

Summer)

Q. 5 Write a program which reads a string and prints the number of words init?

Q. 6 What is the different between putc() and puts() and putchar() functions? (2016-Winter)

Chapter-wise Multiple Choice Questions

CHAPTER-1: MCQ

Q. 1 The “0” and “1” in the binary numbering system are called Binary digits or known as:

a) Bytes
b) Kilobytes
c) Bits
d) Kilobits

Ans: c) Bits

Q. 2 The generation based on VLSI microprocessor:

a) 1st
b) 2nd
c) 3rd
d) 4th

Ans: d) 4th

Q. 3 ULSI stands for?

a) Ultra Large Scale Integration
b) Under Lower Scale Integration
c) Ultra Lower Scale Integration
d) Under Large Scale Integration

Ans: a) Ultra Large Scale Integration

Q. 4 The period of ________ generation was 1952-1964.

a) 1st
b) 2nd
c) 3rd
d) 4th

Ans: b) 2nd

Q. 5 The brain of any computer system is:

a) ALU
b) Memory

c) CPU
d) Control Unit

Ans: c) CPU

Q. 6 CD-ROM is a:

a) Semiconductor memory
b) Memory register
c) Magnetic memory
d) None of above

Ans: d) None of above

Q. 7 A hybrid computer:

a) Resembles digital computer
b) Resembles analogue computer
c) Resembles both a digital and analogue computer
d) None of the above

Ans: c) Resembles both a digital and analogue computer

Q. 8 What was the computer invented by Attanasoff and Clifford?

a) Mark I
b) ABC
c) Z3
d) None of above

Ans: b) ABC

Q. 9 Which of the following is not an input device?

a) OCR
b) Optical scanners
c) Voice recognition device
d) COM (Computer Output to Microfilm)

Ans: d) COM (Computer Output to Microfilm)

Q. 10 When was vacuum tube invented?

a) 1900
b) 1906
c) 1910
d) 1880
Ans: b) 1906

CHAPTER-2 : MCQ

Q. 1 What does part number, part description and number of parts ordered belong to?

a) Output
b) Input
c) Feedback
d) Control

Ans: b) Input

Q. 2 CPU is mainly responsible for:

a) Calculations
b) Processing the data
c) Both 1 and 2
d) Neither 1 nor 2

Ans: c) Both 1 and 2

Q. 3 What is the use of control unit of a microprocessor?

a) To accept input data from keyboard
b) To perform arithmetic and logic functions
c) To store data in memory
d) All of the above

Ans: b) To perform arithmetic and logic functions

Q. 4 In the CPU of a computer, the logical unit is mainly responsible for :

a) Control flow of information
b) Comparing numbers
c) Producing result
d) Mathematical operation

Ans: b) Comparing numbers

Q. 5 CPU is made up of two main components, and they are :

a) Registers and main memory
b) Control unit and registers
c) ALU and bus

d) Control unit and ALU

Ans: d) Control unit and ALU

Q. 6 A bit is the measuring unit of the width of a processor's data path. Commonly used
data path is of:

a) 24 bits
b) 32 bits
c) bits
d) 16 bits

Ans: c) 8 bits

Q. 7 What is the combination with which central processing unit is made ?

a) Arithmetic logic and control unit
b) Control and storage
c) Control and output unit
d) All of the above

Ans: a) Arithmetic logic and control unit

Q. 8 Which language is the set of rules that tells the computer what operation to
perform?

a) Programming language
b) Command language
c) Procedural language

d) Structures

Ans: a) Programming language

Q. 9 Which one of the following statement is true for the machine language ?

a) Programs were first written in this language
b) Computer understands only this language
c) It differs from computer to computer
d) All of the above

Ans: d) All of the above

Q. 10 The language which is understood by the computer is:

a) Machine language
b) Low level language
c) High level language
d) All of the above

Ans: a) Machine language

CHAPTER-3 : MCQ

Q. 1 Junk e-mail is also called:

a) spam
b) spoof
c) sniffer script
d) spool

Ans: a) spam

Q. 2 Office LANS, which are scattered geographically on large scale, can be connected
by the use of corporate:

a) CAN
b) DAN
c) LAN
d) WAN

Ans: d) WAN

Q. 3 The device used to carry digital data on analogue lines is called as:

a) Modem
b) Multiplexer
c) Modulator
d) Demodulator

Ans: a) Modem

Q. 4 Malicious software is known as:

a) Badware
b) Malware
c) Maliciousware
d) Illegalware

Ans: b) Malware

Q. 5 A program that performs a useful task while simultaneously allowing destructive
acts is:

a) Worm
b) Trojan horse

c) Virus
d) Macro virus

Ans: b) Trojan horse

Q. 6 What is the name of an application program that gathers user information and
sends it to someone through the Internet ?

a) A virus
b) Spybot
c) Logic bomb
d) Security patch

Ans: b) Spybot

Q. 7 ISDN stands for:

a) Integrated Services Digital Network
b) Integrated Subscriber Digital Network
c) Internet Services Digital Network
d) Integrated Several Digital Network

Ans: a) Integrated Services Digital Network

Q. 8 Which of the following is a network topology?

a) LAN
b) WAN
c) MAN
d) BUS

Ans: d) BUS

Q. 9 The first web browser is:

a) Mosaic
b) Netscape
c) Internet explorer
d) Collabra

Ans: a) Mosaic

Q. 10 Which one of following are set of rules and procedures to control the data
transmission over the internet:

a) IP address
b) Domains
c) Protocol
d) Gateway

Ans: c) Protocol

CHAPTER-4 : MCQ

Q. 1 Which one of following is collection of related fields that can be treated as a unit

by some application program:

a) field
b) record
c) file
d) database
Ans: b) record

Q. 2 Which of the following is not a part of the usage information ?

a) data created
b) identity of creator
c) owner
d) last date modified
Ans: c) owner

Q. 3 Several instructions execution simultaneously in:

a) processing
b) parallel processing
c) serial processing
d) multitasking

Ans: b) parallel processing

Q. 4 A term that refers to the way in which the nodes of a network are linked together:

a) network
b) topology
c) connection
d) interconnectivity

Ans: b) topology

Q. 5 The Details view show all of the following about a file EXCEPT:

a) name
b) size
c) type
d) password

Ans: d) password

Q. 6 An easy way to sort files is to:

a) right click on a file in Details view
b) click on the column header in Details view
c) click the sort icon in Details view
d) alphabetize them

Ans: b) click on the column header in Details view

Q. 7 After creating a file management system on your computer, you should do all of

the following EXCEPT:

a) delete files that are no longer needed
b) move files to appropriate folders
c) rename folders to be more meaningful
d) run the Task Management
Ans: a) delete files that are no longer needed

Q. 8 When you right-click on a folder on the hard drive and choose Delete, the files:

a) are erased
b) go into the Recycle Bin
c) are moved into the header section of the hard drive
d) go into the Old Documents folder

Ans: b) go into the Recycle Bin

Q. 9 One of the first steps when creating a file management system is to :

a) create new folders
b) delete files that will be moved
c) change to Details view
d) select multiple files

Ans: a) create new folders

Q. 10 Folder names should :

a) use numbers only
b) be as short as possible
c) not contain spaces
d) be meaningful and recognizable

Ans: d) be meaningful and recognizable

CHAPTER-5 : MCQ

Q. 1 An Algorithm represented in the form of programming languages is _________

a) Flowchart
b) Pseudo code
c) Program
d) None

Ans: c) Program

Q. 2 Keep the statement language ______________ while writing a pseudo code.

a) Dependent
b) Independent
c) Case sensitive
d) Capitalized

Ans: b) Independent

Q. 3 Flowcharts and Algorithms are used for

a) Better Programming
b) Easy testing and Debugging
c) Efficient Coding
d) All

Ans: d) All

Q. 4 Which of the following is not a keyword?

a) Read
b) Write
c) Start
d) Endif

Ans: c) Start

Q. 5 ______________ is used to show hierarchy in a pseudo code.

a) Indentation
b) Curly Braces
c) Round Brackets
d) Semicolon

Ans: a) Indentation

Q. 6 ____________ are identified by their addresses, we give them names (field names

/ variable names) using words.

a) Memory variables
b) Memory Locations
c) Memory Addresses
d) Data variables

Ans: b) Memory Locations

Q. 7 ____________ begins with lower case letters.

a) Keywords
b) Variables
c) Tokens
d) Functions

Ans: b) Variables

Q. 8 A symbol used for grouping.

a) ()
b) {}
c) []
d) ―‖

Ans: a) ()

Q. 9 A statement used to close the IF block.

a) ELSE
b) ELSEIF
c) END
d) ENDIF

Ans: d) ENDIF

Q. 10 In structural language, we can't add a new sort of

a) Loop
b) Function
c) Variable
d) Constant

Ans: a) Loop

CHAPTER-6 : MCQ

Q. 1 Who invented C Language?

a) Charles Babbage
b) Grahambel
c) Dennis Ritchie
d) Steve Jobs

Ans: c) Dennis Ritchie

Q. 2 C is _______ type of programming language?

a) Object Oriented
b) Procedural
c) Bit level language
d) Functional

Ans: b) Procedural

Q. 3 A C program is a combination of?

a) Statements
b) Functions
c) Variables
d) All of the above

Ans: d) All of the above

Q. 4 Types of Integers are?

a) short
b) int
c) long
d) All the above

Ans: d) All the above

Q. 5 Choose a correct statement about C break; statement?

a) break; statement can be used inside switch block
b) break; statement can be used with loops like for, while and do while.
c) break; statement causes only the same or inner loop where break; is present to

quit suddenly.
d) All the above.

Ans: d) All the above.

Q. 6 What is the output of the C Program?

int main()
{
 if(4 < 5)
 printf("Hurray..\n");
 printf("Yes");
 else
 printf("England")

 return 0;
}

a) Hurray..Yes
b) Hurray..

Yes
c) Compiler error
d) None of the above

Ans: c) Compiler error

Q. 7 Operator % in C Language is called?

a) Percentage Operator
b) Quotient Operator
c) Modulus
d) Division

Ans: c) Modulus

Q. 8 Can you use C Modulo Division operator % with float and int?

a) Only int variables = Okay
b) Only float variables = Okay
c) int or float combination = Okay
d) Numerator int variable, Denominator any variable = Okay

Ans: a) Only int variables = Okay

Q. 9 Which loop is faster in C Language, for, while or Do While?

a) for
b) while
c) do while
d) All work at same speed

Ans: d) All work at same speed

Q. 10 What is the output of C program with switch statement or block?

int main()
{
int a;

switch(a);
{

printf("DEER ");
}

printf("LION");
}

a) LION
b) DEER LION
c) Compiler error
d) None of the above

Ans: b) DEER LION

CHAPTER-7 : MCQ

Q. 1 Choose correct statement about Functions in C Language.

a) A Function is a group of c statements which can be reused any number of times.
b) Every Function has a return type.
c) Every Function may no may not return a value.
d) All the above.

Ans: d) All the above.

Q. 2 A function which calls itself is called a ___ function.

a) Self Function
b) Auto Function
c) Recursive Function
d) Static Function

Ans: c) Recursive Function

Q. 3 How many values can a C Function return at a time?

a) Only One Value
b) Maximum of two values
c) Maximum of three values
d) Maximum of 8 values

Ans: a) Only One Value

Q. 4 What are types of Functions in C Language?

a) Library Functions
b) User Defined Functions
c) Both Library and User Defined
d) None of the above

Ans: c) Both Library and User Defined

Q. 5 Every C Program should contain which function?

a) printf()
b) show()
c) scanf()
d) main()

Ans: d) main()

Q. 6 What is the maximum number of statements that can present in a C function?

a) 64
b) 128
c) 256
d) None of the above

Ans: d) None of the above

Q. 7 Arguments passed to a function in C language are called ___ arguments.

a) Formal arguments
b) Actual Arguments
c) Definite Arguments
d) Ideal Arguments

Ans: b) Actual Arguments

Q. 8 An array Index starts with?

a) -1
b) 0
c) 1
d) 2

Ans: b) 0

Q. 9 What is the output of C program with arrays and pointers?

int main()
{
int a[3] = {20,30,40};
int *p[3];
p=&a;
printf("%d", *p[0]);
}

a) 20
b) address of element 20
c) Garbage value
d) Compiler error

Ans: d) Compiler error

Q. 10 What is actually passed to PRINTF or SCANF functions?

a) Value of String
b) Address of String
c) End address of String
d) Integer equivalent value of String

Ans: b) Address of String

REFERENCES

1. https://www.tutorialspoint.com/

2. https://www.geeksforgeeks.org/

3. https://www.codecademy.com/

4. https://en.wikipedia.org/

https://www.tutorialspoint.com/
https://www.geeksforgeeks.org/
https://www.codecademy.com/
https://en.wikipedia.org/

