GOVERNMENT POLYTECHNIC, BARGARH **DEPARTMENT OF MATHEMATICS & SCIENCE** # MCQ SERIES ON ENGINEERING CHEMISTRY THEORY FOR 1 ST & 2ND SEMESTERS (BRANCH: COMMON) (SESSION 2022-23) PREPARED BY Gouranga Badhei Sr. Lecturer in Chemistry Sr. Lect.(Math & Science)-cum-HOD Govt. Polytechnic, Bargarh | | CHAPTER -1: ATOMIC STRUCTURE | A. 5f B. 8p C. 2d D. 4f | |-----|--|---| | 1. | According to Rutherford's atomic model, the | 15. The maximum capacity of a p-subshell to hold | | | whole mass of an atom is concentrated at the: | electron is | | | A. Neutron B. Proton C. Nucleus D. Electron | A. 2 B. 4 C. 6 D. 10 | | 2. | Nucleus of an atom consists of | 16. The maximum capacity of a d-orbital to hold | | | A. Protons only B. Neutrons only | electron is | | | | A. 2 B. 6 C. 10 D. 14 | | 2 | C. Electrons only D. Protons & Neutrons | 17. The correct increasing order of energy content of | | ٥. | How many protons, electrons and neutrons are | 3d, 4s, 4d & 5s is: | | | present in N ³ ion? | A. 3d<4s<4d<5s B. 4s<3d<4d<5s | | | A. 7, 7, 7 B. 7, 7, 10 C. 7, 10, 7 D.10, 10, 7 | C. 4s<3d<5s<4d D. 4d<5s<3d<4s | | 4. | Isotopes differ in the number of | 18. Which if the following sub-shell can hold | | | A. Protons B. Electrons C. Positrons D. | maximum number of electrons? | | | Neutrons. | A 0 | | 5. | $_{Z}^{A}M$ and $_{Z}^{A+2}N$ are related as: | 0. 11 3.33 | | | A. Isobars B. Isotopes C. Isotones D. | 19. The valence shell of an atom can't hold more than | | | Isomers | electrons. | | 6. | $_{Z}^{A}M$ and $_{Z+1}^{A+1}N$ are related as: | A. 2 B. 6 C. 8 D. 18 | | | A. Isobars B. Isotopes C. Isotones D. | 20. The penultimate shell of an atom can't hold more | | | Isomers | than electrons. | | 7. | $^{23}_{11}Na \ and \ ^{24}_{12}Mg$ are of each other. | A. 2 B. 6 C. 8 D. 18 | | | A. Isobars B. Isotopes C. Isotones D. | 21. The electronic configuration of sodium ion is: | | | Isomers | A. $1s^22s^22p^63s^1$ B. $1s^22s^22p^63s^2$ | | 8. | Rutherford's atomic model fails to explain: | B. $1s^22s^22p^6$ D. $1s^22s^22p^63s^22p^1$ | | ٥. | A. Spectral lines of Hydrogen | 22. Which of the following element shows exceptional | | | B. Stability of atoms | electron configuration? | | | | A. Ca B. Cu C. Al D. Ar | | | C. Cause of chemical combination | 23. Which of the following electronic configuration | | ^ | D. All of the above. | refers to a noble gas? | | 9. | Bohr's atomic model is based on: | A. $1s^22s^22p^63s^2$ B. | | | A. Photoelectric effect. | 1s ² 2s ² 2p ⁶ 3s ¹ | | | B. Zeeman effect | C. $1s^22s^22p^6$ D. $1s^22s^22p^3$ | | | C. Stark effect | 24. Electrons jump from lower shell to higher shell by: | | | D. Planck's Quantum theory | A. Radiating energy | | 10. | The Shells of an atom are also called: | B. Absorbing energy | | | A. Energy levels B. Orbits | C. Neither radiating nor absorbing energy | | | C. Stationary states D. All the above | D. None of the above. | | 11. | The energy content of a shell can be calculated by: | 25. The energy content of shells as we move | | | A. $E_n = -\frac{2\pi^2 m e^4 z^2}{nh}$ B. $E_n = -\frac{2\pi^2 m e^2 z^2}{n^2 h^2}$ C. $E_n = -\frac{2\pi^2 m e^4 z^2}{n^2 h^2}$ D. $E_n = -\frac{n^2 h^2}{2\pi^2 m e^4 z^2}$ | away forms the nucleus. | | | $nh \qquad nh \qquad n^{2}h^{2}$ | | | | C. $E_n = -\frac{2\pi^2 m e^4 z^2}{n^2 h^2}$ D. $E_n = -\frac{n^2 h^2}{2\pi^2 m e^4 z^2}$ | A. Remain same B. Increases | | | The energy content of various sub-shells can be | C. Decreases D. increases and then | | | compared by: | decreases | | | A. (4n+2π) Rule B. (n+2l) Rule | 26. The energy gap between two adjacent shells | | | C. 2n ² Rule D. (n+l) Rule | | | 13. | Which of the following sub-shell has lowest energy | A. Is always same B. increases | | | content? | C. Decreases D. none of the above | | | A. 4s B. 3d C. 5p D. 4p | 27. Which of the following electronic configurations is | | 14 | Which of the following sub-shell is not allowable? | incorrect? | | | and and research and street is flot allowable; | A. $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ | | Pre | pared By: G Badhei, Sr. Lect. (Chemistry), GP Bargarh | | | | | | | The same of | NAME OF TAXABLE PARTY. | ACTUAL DESCRIPTION OF THE PERSON PERS | TO STATE OF THE OWNER, WHEN TH | The Contraction | | | COLUMN SACTIONS | No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, Oracle or Or | CONTRACTOR OF STREET | | | |--------------|------------------------|--|--|-----------------|-----------|---------|-----------------
--|----------------------|------|---| | | | $1s^22s$ | | | | | | | | 7 | 7. How many electrons are shared during the formation of methane? | | | | $1s^2 2s^2$ | | | | | | | | | A. 2 B. 4 C. 6 D. 8 | | 20 | | $s^2 2s^2$ | | | | f | . la a | ath a | ulo 14 | -1 9 | R. How many electrons are shared during the | | 28. | | angul | | | | tor | tne 4 | 4 0 | rbit | 01 | formation of water molecule? | | | | ogen a | | | | 41 | . / | | | | | | | A. 2 | $2h/_{\pi}$ | B. n_j | $l_{2\pi}$ | | C. 47 | $/\pi$ | | D. | | A. 2 B. 4 C. 6 D. 8 | | | 2 | $^{!\pi}/_{h}$ | | | | | | | | 5 |). How many electrons are shared during the | | 29. | | many | vacai | nt orb | itals | are th | ere ir | n an a | tom | of | formation of ammonia molecule? | | | silico | | | | | | | · air ç | | | A. 2 B. 4 C. 6 D. 8 | | | A. 1 | | В. 3 | | | C. 6 | | | D. 0 | 1 | 0. An ionic bond is always formed between the | | 30 | | many | | at orb | itale | | oro b | 1 an e | | | atoms of elements. | | 50. | boror | | vacai | it oit | itais | are tri | iere ii | i an e | itom | OI | A. Same B. different C. A or B D. None | | | A. 1 | | B. 2 | | | C 3 | | | | | 1. A covalent bond is formed between the atoms of | | 24 | | | | امدياد | د د د ا د | C. 3 | | | D. 4 | | elements. | | | | many | | | elect | rons a | are p | resen | t in | an | A. Same B. different C. A or B D. None | | | | of oxy | | | | | | | | | 2. Ionic compound is formed between: | | | A. 1 | | B. 2 | | | C. 3 | | | D. 4 | 1 | A. Electropositive & Electronegative | | | Ansv | vers t | o Cha | ntor. | _ 1 · A | tomic | C+ | | | ٦ | elements | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | - | B. Stable ions. | | c | D | С | D | В | С | C | D | D | D | - | C. Metals & Non-metals | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | - | D. All of the above. | | С | D | Α | С | C | A | C | C | C | D | 1 | 3. Which of the following is not a property of ionic | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | - | compound? | | В | В | С | В | В | С | С | Α | С | В | | A. High Melting point B. Low Density | | 31 | | | • | | | | | | | | C. Soluble in water D. Don't show | | В | | | | | | | | | | | isomerism | | | | | | | | | | | | 1 | | | | | 9 | CHAP | TER- 2 | 2: CHE | MICA | L BO | NDIN | <u>G</u> | 1 | 4. Which of the following is not a property of | | 1. | Elec | trova | lent b | onds | are fo | ormed | by th | ne | 0 | of | covalent compound? | | | elec | tron/ | s. | | | | | | | | A. Low Melting point B. High Density | | | A. Tr | ansfei | r B. S | Sharin | g C. | Partia | ıl shar | ing | D. | 4 | C. Insoluble in water D. Show isomerism | | | No | one | | | | | | | | 1 | .5 bond is formed between Ca & O? | | 2. | Cov | alent | bond | s are f | forme | d by t | he | c | of | | A. Ionic B. Covalent C. Dative D. Metallic | | | | tron/ | | | | , | _ | | | 1 | .6 bond is formed between Al & Cl? | | | | ansfei | | harin | g C. | Partia | l shar | ing | D. | | A. Ionic B. Covalent C. Dative D. Metallic | | | | one | | | Б О. | , artia | 5 | 6 | ٠. | 1 | .7 bond is formed between C & H? | | 3 | | ive bo | nds a | re for | med | hy the | . | of | | | A. Ionic B. Covalent C. Dative D. Metallic | | ٥. | | tron/ | | 101 | incu | by the | | _ 01 | | 1 | .8 bond is formed between Na & O? | | | | ransfe | | Shari | na C | Dorti | al cha | rina | _ | | A. Ionic B. Covalent C. Dative D. Metallic | | | | lone | . D. | Silaili | ig C | raiti | ai 511a | iiiig | υ. | 1 | .9 bond is formed between K & CI? | | 4 | | | -£ -1- | | | | | | | | A. Ionic B. Covalent C. Dative D. Metallic | | 4. | | _ no. | | | | | a auri | ng tn | e | 2 | 20. Which of the following is a favourable condition | | | | natior | | | | | | | | | for formation of ionic bond? | | _ | | . 2 | | | | | | | | | A. High Ionisation Potential | | 5. | | _ no. | | | | | | ng th | e | | B. Low Electron Affinity | | | | natior | | | | | | | | | C. High Lattice Energy | | | | . 2 | | | | | | | | | D. None | | 6. | | _ no. | | | | | d duri | ng th | e | າ | 1. During the formation of NaCl, sodium attains the | | | forr | matior | n of a | triple | bond | l. | | | | 2 | electronic configuration of | | | | . 2 | | | | | | | | | Significant State of | | Pre | pared | By: G | Badh | iei, Sr | . Lect | . (Che | mistry | /), GP | Barg | garh | | | | | | | | | | | | | | | | | A. | Ne | B. Ar | C. F | (r [| D. He | | | | | | C. | Lewis | D. Bohr's | |-----|--------------------|---------|---------|--------------------|---------|---------------------|----------|----------|---------|---|------------|-------|------------------------|--| | 22 | | | | | | Cl, chl | orine | attain | S | 4 | . Е | lectr | on donors are | <u> </u> | | | | _ | | | | of | | | - | | | | | B. Bronsted Bases | | | | | | C. k | | | | | | | | | | D. Lewis bases | | 22 | | | | | | Cl₂, Ca | attair | ns the | | 5 | Т | | onjugate acid of F | | | 25 | | _ | | | | | | 15 (1) | | 3 | , | | | C. HCO ₃ ²⁻ D. HCO ₃ ⁺ | | | | | | C. k | | | <u> </u> | | | 6 | N | | | to theory. | | 24 | | | | | | ared b | w 02C | h | | U | ' | | | B. Lowery –Bronsted | | 24. | | | | | | | | | | | | | | D. Bothe B & C | | | | _ | | | guiei | ormat | LIOITO | ıa | | 7 | , | | | | | | | cule o | | | | | | | | , | | | | xplain the acidic and basic | | 25 | | | | C. 3 | | | | L | | | - | | | solvent only. | | 25. | | | | | | ared b | | | gen | | | | | r C. Water D. Benzene | | | | | _ | | ation | of a m | iolecu | le of | | 8 | | | h of the following | is a conjugate acid-base | | | | on dio | | | | | | | | | ķ | pair? | | | | | | | | B. 2 | | | | D | . 4 | | | | NH₃ & H₂O | | | 26. | | | | coı | | | | | | | | C. | H ₂ O & OH⁻ | D. H ₂ S & S ^{2 −} | | | Α. | Ioni | c B. | Coval | ent (| C. Dati | ve D. | Meta | lic | 9 | . / | Accor | ding to Bronsted- | Lowery theory an acid | | 27. | H ₂ O i | is a/ar | ۱ | co | mpou |
ınd. | | | | | a | and a | base react to for | m | | | Α. | Ioni | c B. | Coval | ent (| C. Dati | ve D. | Meta | llic | | | A. | Salt & Water | B. Co-ordinate bond | | 28. | CO ₂ i | s a/ar | ı | co | mpou | ınd. | | | | | | C. | Another pair of a | acid & base D. Ionic bond | | | A. | Ioni | c B. | Coval | ent (| C. Dati | ve D. | Meta | llic | 1 | 0. V | Nhicl | h of the following | theories of acids and | | 29. | NH ₃ i | is a/ar | າ | co | mpol | ınd. | | | | | k | ases | involves the tran | sfer a proton from one | | | A. | loni | с В. | Coval | ent (| C. Dati | ive D. | Meta | llic | | S | ubst | ance to another? | | | 30. | MgB | r₂ is a | /an _ | | comp | ound. | | | | | | A. | Arrhenius | B. Lowery –Bronsted | | | | | | | | C. Dati | | Meta | llic | | | | Lewis | | | | | | | | | | | | | 1 | 1. \ | Nhicl | h of the following | theories of acids and | | | | | | | | | | | | | | | _ | sfer an electron pair from | | | | | | | | | | | | | | | ubstance to anoth | • | | | Ansv | vers t | o Cha | pter - | - 2: Cl | nemica | | ding | | | | Α. | Arrhenius | B. Lowery –Bronsted | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | Lewis | D. Both A & B | | Α | В | С | В | Α | С | D | В | C | В | 1 | 2. F | | n acceptors are b | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | theory? | | | C | D | В | В | В | В | B | A 20 | A 20 | C 20 | | - | Α. | Arrhenius | B. Lowery –Bronsted | | 21 | 22 | 23 | 24 | 25 | 26
B | 27
B | 28
B | 29
B | 30
A | | | | Lewis | D. Both A & B | | Α | В | В | Α | В | Ь | Ь | В | Ь | Α | 1 | 3 F | | s a/an | | | | | | | | | | | | | _ | J. 1 | | Acid | _·
B. Base | | | | CH | APTE | R – 3: | ACID | - BAS | E THE | ORY | | | | | Amphoteric | D. Salt | | 1. | Acco | rding | to Arı | heniu | s the | ory, ac | cids ar | e he | | 1 | л <u>г</u> | | - | m an acid produces | | | subst | tances | whic | h furr | nish | i | n aqu | eous | | 1 | 4. 1 | | Conjugate base | - 1° | | | solut | | | | _ | | · | | | | | | | | | | | | on B. | OH ⁻ io | n (| C. Elec | tron | D. | | | | C. | Double salt | D. Amphoteric | | | | | tron | 0 | | | | | | | | | substance | | | 2 | HCl is | | | cordin | g to | the | eorv | | | 1 | 5. t | | a/an | | | ٠. | | Arrh | | | _ | Lowe | | kronst | ed | | | A. | Arrhenius acid | B. Lowery –Bronsted | | | | Lew | | | |). Lowe
). Both | • | | Cu | | | | acid | 1 27 · · · · · · · · | | 2 | | | | ro for | | when a | | | rtc. | | | | Lewis base | D. Lewis acid | | J. | | | | | | мпеп а
t | | | | 1 | 6. 9 | | is a/an | | | | | Arrh | | | | ـــــــ د
B. Low | | | ad | | | A. | Arrhenius acid | B. Lowery –Bronsted | | | А. | AIII | icilius | , | | . LUW | Ciy — | ,, O1131 | cu | | | | acid | | | | C. | Lewis base | D. Lewis acid | | A. | CH ₃ | COON | а | £ | 3. Na ₂ 9 | O ₄ | | | |-------|--------|--|------------------------------------|-----|------------------------------|-----------------|------------------------------|--------------------|---------|------------------------|----------------|---------|-------| | 17, | The a | icidic property of SO: | can be explained as | | C. | KCI. | .MgCl ₂ | .6H ₂ O | |), NaB | H ₄ | | | | | | theory? | | 31 | . A str | ong a | cid rea | acts w | ith a | weak l | oase t | o forn | n | | | | | B. Lowery –Bronsted | | Armening/compa | sa | lt. | | | | | | | | | | | D. Both A & B | | Α. | Acid | dic | | £ | 3. Basi | С | | | | 18, | The b | asic nature of NH ₃ ca | n't be explained as per | | C. | Dot | uble | | [| D. Con | nplex | | | | | | theory? | | 32 | . A we | ak ac | id rea | cts wi | th a st | rong | base t | o forr | n | | | | | B. Lowery –Bronsted | | | sa | lt. | | | | | | | | | C. | Lewis | D. Both A & B | | | Aci | | | E | 3. Basi | С | | | | 19. | Which | h of the following is a | strong base? | | C. | Do | uble | | ſ | D. Con | nplex | | | | | A. | CO ₃ 2 - | B. 5O ₄ ² - | 33 | . Parti | al ne | utraliz | ation | of a p | olybas | ic aci | d by a | | | | | CI = | | | | | lts in t | | | | | | | | 20. | | of the following is | | | | Aci | | | | 3. Basi | | | , | | | | CH₃COOH | | | | | uble | | |). Con | | | | | | | HCI | | 34 | | | utraliz | | | | | ase hv | an | | 21. | | nemical reaction in v | | 5-1 | | | ts in th | | | | | | | | | | base to form salt ar | | | | | dic | | | 3. Basi | | | Juit. | | | | reaction. | id water is called | | | | uble | | | | | | | | | | | B. Substitution | 25 | | | salt p | | | | | than | | | | | Neutralization | | 55 | | | in wat | | .65 | | . 1011 V | VIICII | | | 22 | | eutralization reactio | | | | Sim | | | Compl | ex C | Acid | ic D | | | 2.6. | | Heat is liberated | A PROTECTIVE STREET STREET | | Α. | Bas | | Б. (| Jonnpi | ex c | . Aciu | ic D | • | | | | Heat is absorbed | | | | Das | ic | | | | | | | | | | Heat is neither emi | ttad nor absorbed | | Ans | wers | to Cha | pter - | - 3: A | cid-Ba | se Th | eory | | | | | None of the above | ited nor absorbed | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 22 | | | abruda aald vaaate with | Α | D | Α | D | В | D | С | С | С | В | | | | | phuric acid reacts with | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | m hydroxide is: | B. 41-50 | С | A | С | Α | D | D | С | Α | Α | Α | | | | Na _z CO ₃ | B. NaSO ₄ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | Na ₂ SO ₄ | D. NaHCO ₃ | C | A | C | В | A | Α | D | С | В | D | | 24. | | n of the following is | | 31 | 32
B | 33 | 34 | 35 | | | | | | | | | NaHCO ₃ | B. Na ₂ SO ₄ | _A | В | Α | В | В | | | | | | | | | Ca(OH)Cl | D. NH₄Cl | | | | | | | | | | | | 25. | | n of the following is a | | | | | C | НАРТІ | ER-4: | SOLUT | ION | | | | | | NaHSO₄ | B. Na ₂ SO₄ | 1. | The u | nit of | equiva | | | | | | | | | | Ca(OH)Cl | D. MgCl ₂ | | A. Gi | | B. Kg | | . amu | | | nit les | SS | | 26. | | n of the following is a | a basic salt? | | | | ent w | | | | | | | | | | CH₃COONa | B. Na ₂ SO ₄ | | A. 30 | - | B. 60 | | | | D. 5 | | | | | | MgCl ₂ | D. NH₄Cl | | | | eans | | | | | | | | 27. | Whic | n of the following is a | a mixed salt? | | | | eplace | | H ato | ms | | | | | | A. | CH ₃ COONa | B. Na _z SO ₄ | | | | eplace | | | | | | | | | C. | KCI.MgCl ₂ .6H ₂ O | D. NaKSO₄ | | | | es less | | | oups | | | | | 28. | Whic | h of the following is a | a double salt? | | | | f the a | | | | | | | | | A. | CH ₃ COONa | B. Na ₂ SO ₄ | | | | weigh | | | emen | ts are | comr | arad | | | C. | KCl.MgCl ₂ .6H ₂ O | D. NaKSO ₄ | | | | | | | | is ale | comp | areu | | 29, | Which | h of the following is a | a complex salt? | | With t
A. ¹² (| | omic v
B. ¹⁴ C | | |
C. ¹⁴ N | | D | | | | | CH₃COONa | B. Li[AlH4] | | | | b C | | , | ~. IV | | D | • | | | C. | KCI.MgCl ₂ .6H ₂ O | D. NaKSO ₄ | ٠ . | 20 ₍ | | | المامات | | ۸ II | ini | - ابیم | .b+- | | | | h of the following is | | | The r | | ular v
ol. | weign | l Of | Allum | iiiium | suip | mate | | Prepa | ared B | y: G Badhei, Sr. Lect. | . (Chemistry), GP Bargarh | | | | | | | | | | | | A. 432 B. 315 | | |---|--| | 6. The molecular weight of | f ammonium carbonate | | is gm/mol.
A. 96 B. 94 | C 79 D 76 | | 7. The correct relationship | | | weight (E), Atomic weight | | | A. $A = \frac{E}{V}$ B. $V = \frac{A}{F}$ | | | V D.V = E | C. V-LXA D.L-A- | | 8. The equivalent weight of s | ulphuric acid is: | | A. 98 B. 50 | | | Basicity of an acid means: | 5. 15 | | A. No. of replaceable H a | toms | | B. No. of replaceable OH | | | C. P ^H values more than 7 | | | D. None of the above. | | | 10. What is the total valen | cy of the metal Al in | | $Al_2(SO_4)_3$? | | | A. 2 B. 3 | C. 5 D. 6 | | 11. The P ^H value of 1 M HNO ₃ | | | A. 0 B. 1 C. 7 | | | 12. The P ^H value of 0.01 M HC | | | A. 1 B. 2 C. 3 | | | 13. The P ^H value of 10 ⁻² M N
B. 2 B. 3 C. 11 | | | 14. The [H ⁺] ion concentration | | | 4 ismoles/liter. | ir or a solution having r | | A. 10 ⁻² B. 10 ⁻⁴ | C. 10 ⁻¹⁴ D. 10 ⁻ | | 7 | | | 15. The P ^H value of an acidic se | olution should be: | | A. Less than 7 | B. more than | | 7 | | | 0 5 1. 5 | | | C. Equal to 7 | D. Equal to 14 | | 16. The P ^H value of lemon juic | e is: | | 16. The PH value of lemon juic A. Less than 7 | | | 16. The P ^H value of lemon juic A. Less than 7 7 | e is:
B. more than | | 16. The P^H value of lemon juic A. Less than 7 7 C. Equal to 7 | e is: | | 16. The P^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P^H value of blood is: | e is: B. more than D. Equal to 14 | | 16. The P^H value of lemon juic A. Less than 7 7 C. Equal to 7 | e is:
B. more than | | 16. The P^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P^H value of blood is: A. 3.3 to 3.5 | e is: B. more than D. Equal to 14 B. 9.3 to 9.5 | | 16. The PH value of lemon juic A. Less than 7 C. Equal to 7 17. The PH value of blood is: A. 3.3 to 3.5 C. 7.3 to 7.5 | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 | | 16. The P^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P^H value of blood is: A. 3.3 to 3.5 | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 | | 16. The P ^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P ^H value of blood is: A. 3.3 to 3.5 C. 7.3 to 7.5 18. The basicity of H ₃ BO ₃ is | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 C. 3 D. 4 | |
16. The P ^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P ^H value of blood is: A. 3.3 to 3.5 C. 7.3 to 7.5 18. The basicity of H ₃ BO ₃ is A. 1 B. 2 | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 C. 3 D. 4 | | 16. The P ^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P ^H value of blood is: A. 3.3 to 3.5 C. 7.3 to 7.5 18. The basicity of H ₃ BO ₃ is A. 1 B. 2 19. The basicity of H ₃ PO ₃ is | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 C. 3 D. 4 C. 3 D. 4 | | 16. The P ^H value of lemon juic A. Less than 7 7 C. Equal to 7 17. The P ^H value of blood is: A. 3.3 to 3.5 C. 7.3 to 7.5 18. The basicity of H ₃ BO ₃ is A. 1 B. 2 19. The basicity of H ₃ PO ₃ is A. 1 B. 2 | B. more than D. Equal to 14 B. 9.3 to 9.5 D. Equal to 7 C. 3 D. 4 C. 3 D. 4 | Prepared By: G Badhei, Sr. Lect. (Chemistry), GP Bargarh 21. For the manufacture of sugar, the PH value of sugarcane juice should be maintained at : A. ≈ 7 B. < 7 C. > 7 D. 14 22. The P^H value of raw pulp for the manufacture of paper is: A. 1-2 B.3-4 C.5 - 6 D. 7 - 23. The P^H value of pulp is to be maintained between _____ for getting quality paper used for writing. A. 5-6 B. 8-9 C. 9 – 10 D.13 – 14 24. The process of control of quality and binding of pulp so the ink does not spread on paper is called___. A. Matrix B. Reduction C. Cobb D. Oxidation | | Answers to Chapter –4: Solution | | | | | | | | | | | | | | | |----|---------------------------------|----|----|----|----|----|----|----|----|--|--|--|--|--|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | | | | D | В | В | Α | Α | Α | В | С | Α | D | | | | | | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | | | | Α | В | D | В | Α | Α | С | Α | В | С | | | | | | | | 21 | 22 | 23 | 24 | | | | | | | | | | | | | | Α | D | Α | С | | | | | | | | | | | | | ## Chapter - 5: Electrochemistry 1. The substance which allows electricity to pass through its molten, fused or solution state is called: A. Conductor B. Electrolyte C. Non-electrolyte D. Insulator 2. Which of the following is a non-electrolyte? A. Common salt B. Vinegar C. Glucose D. Caustic soda 3. Which of the following is an electrolyte? A. Glucose B. Urea C. Sugar D. Table salt 4. Acetic acid is a/an _____ A. Strong electrolyte B. Weak electrolyte C. Tetra basic acid D. Dibasic acid 5. The electrode to which — ve terminal of a battery is attached is called: A. Cathode B. Anode C. Node Antinode 6. During electrolysis electrons flow from: A. Anode to Cathode B. Cathode to Anode D. C. Can't be predicted D. None | 7. Faraday's 1st law of electrolysis deals with the | |---| | quantitative relationship between: | | A. Mass & Equivalent mass of substance. | | B. Mass & Atomic mass of substance | | C. Mass of substance & quantity of charge | | D. Equivalent mass & quantity of charge. | | 8. Faraday's 2 nd law of electrolysis deals with the | | quantitative relationship between: | | A. Mass & Equivalent mass of substance. | | B. Mass & Atomic mass of substance | | C. Mass of substance & quantity of charge | | D. Equivalent mass & quantity of charge. | | 9. The process of applying a coating of 'Zn' over the | | surface of a metal is called: | | A. Animation B. Calcination | | C. Solvation D. Galvanization | | 10. Which of the following method is applied to | | prevent corrosion? | | A. Oiling B. Painting C. Alloying D. All the | | above | | 11. Rusting of iron is an example of corrosion. | | A. Waterline B. Stress C. Atmospheric D. | | Pitting | | 12. If Q = quantity of charge and W = amount of | | substance formed, then according to Faraday's 1st | | law of electrolysis: | | A. W = Q B. W \approx Q C. W \propto Q D. W $\propto \frac{1}{0}$ | | ¥ | | 13. How many grams of calcium is formed at the | | cathode by the passage of 96500 C of charge | | through molten CaCl ₂ solution? | | A. 5 gm B. 10 gm C. 20 gm D. 40 gm | | 14. Electrolysis of molten NaCl produces: | | A. Sodium metal at anode, chlorine gas at | | cathode | | B. Sodium metal at cathode, chlorine gas at | | anode | | C. Hydrogen gas at cathode, chlorine gas at | | anode | | D. Hydrogen gas at anode, chlorine gas at | | cathode | | 15. The resulting solution after the electrolysis of | | aqueous NaCl solution is: | | A. Acidic B. Alkaline C. Neutral D. cannot be | | predicted | | 16. During electroplating of Zinc over iron, | | A. Zinc is used as cathode | | B. iron is used as anode | | C. Zinc is used as Anode | | Prepared By: G Badhei, Sr. Lect. (Chemistry), GP Bargarh | | | - D. FeSO₄ is used as electrolyte. - 17. If a coating of silver is to be applied over a steel spoon, then - A. Silver is used as anode and AgNO₃ solution is used as electrolyte. - B. Steel is used as anode and AgNO₃ solution is used as electrolyte. - C. Silver is used as cathode and AgNO₃ solution is used as electrolyte. - D. Steel is used as cathode and ZnSO₄ solution is used as electrolyte. - 18. How many coulombs of charges are required to get 2.4 grams of magnesium by the electrolysis of molten MgCl₂? - A. 96500 B. 19300 C. 482500 D. 24125 - 19. During electrolysis of aqueous solution of NaCl - A. Hydrogen gas is liberated at the Anode - B. Chlorine gas is liberated at the Anode - C. Metallic sodium is deposited at the Cathode - D. Oxygen gas is liberated at the Anode. | | Ans | wers | to Cha | apter | -5: El | ectro | hemi | stry | | | | | | | |----|----------------------|------|--------|-------|--------|-------|------|------|---|--|--|--|--|--| | 1 | 1 2 3 4 5 6 7 8 9 10 | | | | | | | | | | | | | | | В | С | D | В | Α | Α | С | Α | D | D | | | | | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | | | | | | | С | С | С | В | В | Α | Α | В | В | | | | | | | #### **Chapter-6: CORROSION** | 1. | The | proc | ess of | gra | dual | dete | erioratio | on | of | |----|-----|----------|------------|--------|-------|--------|-----------|------|-----| | | me | tallic | surface | s d | lue | to | atmos | phe | ric | | | cor | ditions | is called | i | | | | | | | | A. | Galvar | nization | | B. C | alcina | ition | | | | | C. | Corros | ion | | D. F | erme | ntation | | | | 2. | Rus | sting of | iron is a | n exa | ample | of_ | | | | | | A. | Water | line corr | osio | า | | | | | | | B. | Atmos | pheric c | orros | sion | | | | | | | C. | Pitting | corrosi | on | | | | | | | | D. | Stress | corrosic | n | | | | | | | 3. | Wa | iterline | corros | ion | is a | | ty | pe | of | | | cor | rosion. | | | | | | | | | | A. | Differe | ential ox | ygen | conc | entra | tion | | | | | В. | Differe | ential hy | drog | en co | ncent | ration | | | | | C. | Differe | ential wa | ater c | once | ntrati | on | | | | | _ | | ential CC | | | | | | | | 4. | The | e rate c | of rusting | g of i | ron i | s enh | anced b | by t | he | | | pre | sence o | of | _; | | | | | | | | A. | CO_2 | B. H | е | C. N | lH₃ | [|). N | 2 | | | | | | | | | | | | | | 5. The essential conditions for rusting of iron are | 4. The process of heating an ore below its melting | |----|--|--| | | the presence of: | point in absence of air is called: | | | A. Moisture, N ₂ , O ₂ | A. Calcination B. Roasting C. Smelting D. None | | | B. Moisture, Air, O ₂ | 5. The process of heating an ore below its melting | | | C. Air, CO ₂ , HCl | point in presence of air is called: | | | D. CO ₂ , HCl, N ₂ | A. Calcination B. Roasting C. Smelting D. None | | | | 6. In which step of metallurgical operation ores are | | | 6. Duriron is an alloy of | converted into their oxides? | | | | A. Concentration B. Oxidation | | | | C. Reduction D. Distillation | | | C. Copper and Zinc | 7. In the reduction step of metallurgical operation: | | | D. Copper and Tin | A. Ores are converted into oxides | | | 7. The process of applying a
coating of zinc on | B. Ores are converted into metals | | | the surface of iron is called: | C. Metal oxides are converted into metals | | | A. Galvanization B. Calcination | | | | C. Corrosion D. Fermentation | D. Metals are refined. | | | Corrosion of metals can be prevented by: | 8. The correct order of the steps of metallurgical | | | A. Alloying B. Oiling | operation is | | | C. Galvanization D. All of the above | A. Concentration, Reduction, Oxidation, Refining | | | 9. Rust is nothing but | B. Refining, Reduction, Oxidation, Concentration | | | A. Hydrated copper oxide | C. Oxidation, Reduction, Concentration, Refining | | | B. Hydrated zinc oxide | D. Concentration, Oxidation, Reduction, Refining | | | C. Anhydrous iron oxide | 9. The chemical substance added during the process | | | D. Hydrated iron oxide | of smelting which reacts with impurities is called: | | | 10. Presence of saline water the process of | A. Flux B. Slag C. Matrix D. Gangue | | | rusting. | 10. The molten material which is obtained during | | | A. Enhances B. Reduces | smelting is: | | | C. Doesn't affect D. none. | A. Flux B. Slag C. Matrix D. Gangue | | | C. Bocsii t direct | 11. During the process of smelting the roasted ore is | | | Answers to Chapter –6: Corrosion | heated with a suitable quantity of: | | | 2 3 4 5 6 7 8 9 10 | A. Coke B. Gangue C. Matrix D. | | | B A A B A A D C A | CaO | | E. | ETALLURGY & ALLOYS | 12. Which of the following method is used to refine | | | and the state of t | volatile metals? | | | The earthly impurities contaminated with ores are | A. Van-Arkel Method B. Zone Refining | | | called: | | | | A. Flux B. Slag C. Gangue D. Clinker | • | | | Which of the following method of concentration is | 13. An alloy must contain a | | | employed for the concentration of carbonate and | A. Metal B. Non-metal C.Metalloid D. Semi- | | | | metal | | | oxide ores? | | | | A. Oil-floatation B. Leaching | 14. An alloy containing mercury as one of the | | | | 14. An alloy containing mercury as one of the components is called: | | | A. Oil-floatation B. Leaching | | | | A. Oil-floatation B. Leaching C. Gravity Separation D. Magnetic | components is called: | | | A. Oil-floatation B. Leaching C. Gravity Separation D. Magnetic separation Which of the following method of concentration is | components is called: A. Mercuria B. Amalgam C. Ferro-alloy D. | | | A. Oil-floatation B. Leaching C. Gravity Separation D. Magnetic separation Which of the following method of concentration is generally employed for the concentration of | components is called: A. Mercuria B. Amalgam C. Ferro-alloy D. None | | | A. Oil-floatation B. Leaching C. Gravity Separation D. Magnetic separation Which of the following method of concentration is generally employed for the concentration of sulphide ores? | components is called: A. Mercuria B. Amalgam C. Ferro-alloy D. None 15. Ferro alloys contain as the main | | | A. Oil-floatation B. Leaching C. Gravity Separation D. Magnetic separation Which of the following method of concentration is generally employed for the concentration of | components is called: A. Mercuria B. Amalgam C. Ferro-alloy D. None 15. Ferro alloys contain as the main constituent. | A. Cu = 60-80%; Zn = 20-40% B. Zn = 60-80%; Cu = 20-40% 2. 3. separation | | C. Cu = 75-90%; Zn = 10-25% | A. C ₂ H ₄ B. C ₆ H ₁₀ C. C ₆ H ₆ D. | |------------|--|--| | | D. Cu = 75-90%; Sn = 10-25% | C_5H_{10} | | 17. | The composition of Bronze is: | Aromatic compounds obey rules. | | | A. Cu = 60-90%; Zn = 10-40% | A. Faraday's B. Bohr's C. Huckel's D. Burry's | | | B. Zn = 60-80%; Cu = 20-40% | 11. Saturated hydrocarbons contain: | | | C. Cu = 75-90%; Zn = 10-25% | A. Carbon – Carbon single bonds only | | | D. Cu = 80-95%; Sn = 5-20% | B. Carbon – Carbon double bonds only | | 18. | Steel Alnico contains% of steel. | C. Carbon – Carbon triple bonds only | | | A. 30 B. 40 C. 50 D. 60 | D. Both Carbon – Carbon single & double bonds. | | 19 | Which of the following is a ferroalloy? | 12. Unsaturated hydrocarbons may contain: | | 15. | A. Brass B. Bronze C. Steel D. Bell metal | A. Carbon – Carbon single bonds only | | | A. Brass D. Bronze C. Steel B. Bell Metal | | | A | nswers to Chapter –7, 8: Metallurgy & Corrosion | B. Carbon – Carbon double bonds only | | 1 | 2 3 4 5 6 7 8 9 10 | C. Carbon – Carbon triple bonds only | | С | C A A B B B D A B | D. Carbon – Carbon double &/or triple bonds. | | 11 | 12 13 14 15 16 17 18 19 | 13. IUPAC name of the compound $(CH_3)_2CH - CH_3$ is: | | A | D A B B A D C C | A. 2 – methylpropane B. 2 – methylbutane | | | | C. 3 – methylpropane D. 3 – methylbutane | | | | 14. IUPAC name of the compound | | <u>Cha</u> | pter -9: Hydrocarbons | $CH_3 - CH_2 - CH$ (OH) - $CH = CH_2$ is | | 1 | The general formula of alkane is: | A. Pent – 3 – en – 2 – ol B. Pent – 1 – en – 2 – | | 1. | | ol | | | A. C_nH_{2n} B. C_nH_{2n+1} C. C_nH_{2n+2} D. | C. Pent – 1 – en – 3 – ol D. Pent – 3 – en – 3 – | | _ | C_nH_{2n-2} | ol | | 2. | The general formula of alkene is: | 15. According to Huckel's Rule "the cyclic | | | A. C_nH_{2n} B. C_nH_{2n+1} C. C_nH_{2n+2} D. | hydrocarbons containing electrons are | | | C_nH_{2n-2} | aromatics." | | 3. | The general formula of alkyne is: | A. $(4n + 1)\pi$ B. $(2n + 4)\pi$ C. $(4n + 2)\pi$ D. $(n+1)\pi$ | | | A. C_nH_{2n} B. C_nH_{2n+1} C. C_nH_{2n+2} D. | | | | C_nH_{2n-2} | 16. Which of the following is not an example of | | 4. | Which of the following is a saturated | aromatic compound? | | | hydrocarbon? | A. Benzene B. Pentene | | | A. C ₂ H ₄ B. C ₃ H ₄ C. C ₄ H ₁₀ D. | C. Naphthalene D. Anthracene | | | C₅H ₁₀ | 17. Who proposed the "vital force" theory? | | 5 | Which of the following is an unsaturated | A. Wohler B. Berzelius C. Bohr D. | | ٥. | hydrocarbon? | Rutherford | | | A. C ₂ H ₄ B. C ₃ H ₈ C. C ₄ H ₁₀ D. | 18. The first organic compound synthesized in | | | | laboratory is: | | _ | C ₅ H ₁₂ | A. Acetic acid B. Butane C. Urea D. Propane | | ь. | Which of the following is an alkane? | 19. The IUPAC name of neo-pentane is: | | | A. C ₂ H ₄ B. C ₃ H ₄ C. C ₄ H ₁₀ D. | A. 2-Methylpropane B. 3-Methylpentane | | _ | C ₅ H ₁₀ | C. 2,2-Dimethylpropane D. 2,2- | | 7. | Which of the following is an alkene? | Dimethylpentane | | | A. C_2H_4 B. C_3H_4 C. C_4H_{10} D. | 20. The IUPAC name of iso -pentane is: | | | C ₅ H ₁₀ | A. 2-Methylpropane B. 2-Methylbutane | | 8. | Which of the following is an alkyne? | C. 2,2-Dimethylpropane D. 2,2- | | | A. C_2H_2 B. C_3H_6 C. C_4H_{10} D. | Dimethylpentane | | | C ₅ H ₁₀ | Diffettification | | 9. | Which of the following is the chemical formula of | Answers to Chapter –9: Hydrocarbons | | | is benzene? | 1 2 3 4 5 6 7 8 9 10 | | | | C A D C A C A A C C | | Pre | pared By: G Badhei, Sr. Lect. (Chemistry), GP Bargarh | | | | | | and prove | SECURE S | | | | | | | | | | | | | 10 | | | |----------|---------|-------------------|-----------|----------|--------|---------|----------|---------|--------|----|---|-------------------------------------|-------------------|-----------|-----------------|-------------|-------|--|--| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Α. | Adding | g bleaching | powde | er B. | Вс | iling | | | | Α | D | Α | С | С | В | В | С | С | В | | | | | | | | | | | | l l | | | | | | | | | | | C. | Adding | g chlorine | | D. | Ac | lding | | | | Ch. | | 10.14 | ATED | TDEA | TRACK | ıт | | | | | | Soda | | | | | | | | | Chi | apter - | - 10: W | AILN | INLA | TIVILI | | | | | 11 | . The | e unit of | hardness | of wate | er is: | | | | | | 1. | Whic | n of th | e foll | owing | sourc | e is c | onsid | ered 1 | to be | | A. | Gm | B. mg | | C. amu | D. | | | | | 1 | the p | urest f | orm o | f natu | ral wa | iter? | | | | | | ppm | | | | | | | | | | A. R | iver W | ater | | | | B. Se | ea Wa | iter | 12 | . The | e resid | ual hardr | iess le | ft in colo | l lime- | soda | | | | | C. R | ain Wa | iter | | | | D. | S | pring | | pro | ocess is | about | | | | | | | | | V | /ater | | | | | | | | | A. | 2 | B. 10 – 1 | 5 | C. 15 – 30 | D. | 50 – | | | | 2. | | n of th | | _ | | | | ered t | to be | | 60 | | | | | | | | | | | the in | npures | t forn | n of na | atural | water | ? | | | 13 | 13. The residual hardness left in hot lime-soda process | | | | | | | | | | | | ver W | | | | | B. Se | ea Wa | iter | | | | ppm. | _ | | .1 | | | | | | | ain Wa | iter | | | | D. | S | pring | | Α. | 2 | B. 10 – 1 | 5 | C. 15 – 30 | D. | 50 – | | | | | | /ater | | | | | | | | | | 60 | | | | | | | | | 3. | | : | | f sea | wate | r cor | ntains | diss | olved | 14 | | | | - | ated steam | at | IS | | | | | | m chlo | | | | | | | | | | | ough hard | water. | ь. | 50 0 | co0c | | | | _ | A. 1 | | B. 2 | | | | | | . 3.5 | | Α. | $15^{0} - 3$ | 80°C | | В. | 50° – | 60°C | | | | 4. | | r which | | ers wi | | | | | ed: | | _ | 000 1 | E00C | | ь. | 150° | 1 | | | | | | oft Wa | | | | B. Hard | | | | | C. | $80^{\circ} - 1$
200° C | .50°C | | D. | 150 | _ | | | | _ | | eavy V | | | |). Dist | | | | 15 | ln . | | vahanga ra | sin the | o o o tivo a ra | un ici | | | | | 5. | | r which | n doe | s not | lather | with | soap | solut | ion is | 12 | 15. In cation exchange resin, the active group is:A. Acidic functional group | | | | | | | | | | | called | | 4 | | - | · 11 | -1 347-4 | | | | | |
unctional g | | | | | | | | | | oft Wa | | | E | | | | | | C. | | anctional E | | , | | | | | | C | | eavy V | | | |). Dist | | | | | | | | | , | | | | | | 6. | - | orary l | | ess ar | ises a | ue to | tne p | resen | ice of | 16 | D. None of the above.16. In anion exchange resin, the active group is: | | | | | | | | | | | | in wate
arbona | | f C 2 8. | Ma | n Ch | lorido | c of | Ca 8. | 10 | In anion exchange resin, the active group is: A. Acidic functional group | | | | | | | | | | | A. C. | | ites o | ı Ca Q | ivig | b. CII | oriue | 3 01 | Ca & | | A. Acidic functional group B. Basic functional group | | | | | | | | | | | | ъ
icarbo | nates | of Ca | & Ma | - D (| Sulnha | ate of | Fe | | C. Neutral functional group | | | | | | | | | | 7 | | enent l | | | _ | | • | | | | | | of the abov | • | | | | | | | /. | | n wate | | CJJ ui | 1505 0 | uc to | the p | · cocii | 00 01 | 17 | . Cat | tion exc | hange res | in can l | be regenei | ated b | v the | | | | | | arbona | | f Ca & | Mg | 3. Chi | oride | s of | Ca & | | | | of | | | | | | | | | / N | | | | | | | | | | A. | Dilute | NaOH | | B. Dilute K | ОН | | | | | | | icarbo | nates | of Ca | & Mg | D. 0 | Chlori | de of | Fe | | C. | Dilute | H₂SO ₄ | | D. Dilute N | laCl | | | | | 8. | | orary ł | | | _ | | | | | 18 | . An | ion exc | hange resi | n can l | oe regener | ated b | y the | | | | | | carbor | | | | | | | | | tre | atment | of | | | | | | | | | B. C | nloride | hard | ness | | | | | | | A. | Dilute | KCl | | B. Dilute K | ОН | | | | | | C. C | arbona | te ha | rdnes | 5 | | | | | | D. | Dilute | H₂SO₄ | | D. Dilute N | laCl | | | | | | D. N | on-car | bonat | e har | dness | | | | | 19 | . Th | e precip | oitate form | ned du | ring softer | ning of | hard | | | | 9. | Perma | anent l | nardn | ess is | also c | alled _ | | | | | wa | ter by li | me-soda n | nethod | is called: | | | | | | | | carbor | | | | | | | | | A. | Slag | B. Flux | C. 6 | Gangue | D. Slu | dge | | | | | B. C | nloride | hard | ness | | | | | | 20 | . Th | e residu | al hardnes | s left ir | n ion-excha | inge pro | ocess | | | | | C. C | arbona | te ha | rdness | 5 1 | | | | | | is a | bout _ | PPM. | | | | | | | | | D. N | on-car | bonat | e har | dness | | | | | | A. | 2 | B. 10 – 1 | 5 | C. 15 – 30 | D. 50 | - 60 | | | | 10. | Temp | orary | hardn | ess o | f wat | er car | n be | elimir | nated | | | | | | | | | | | | | by: | Answers to Chapter -10: Water Treatment | | | | | | | | | | | |---|----|----|----|----|----|----|----|----|----|--| | 1 2 3 4 5 6 7 8 9 10 | | | | | | | | | | | | С | В | С | Α | В | C | В | С | D | В | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | D | D | С | С | Α | В | С | В | D | Α | | # **Chapter -11: LUBRICANTS** - 1. The chemical substance used in between two surfaces in contact with a view to reduce frictional resistance between them is called: - A. Applicant B. Slag C. Flux D. Lubricant - 2. Which of the following is a solid lubricant? - A. Graphite - B. Mica - D. B. Molybdenum disulphide Αll the above - 3. Solid lubricants are preferred where: - A. The working temperature is very low. - B. The working temperature is very high. - C. There is a chance of heavy jerk. - D. None of the above - 4. Semi-solid lubricants are preferred where: - A. The working temperature is very low - B. The working temperature is very high - C. There is a chance of heavy jerk - D. None of the above - 5. Boron trinitride is an example of: - A. Solid lubricant - B. Liquid lubricant - C. Semi-solid lubricant D. None of the above - 6. Which of the following lubricants is preferred when there is a chance of heavy jerk? - A. Solid lubricant - B. Liquid lubricant - C. Semi-solid lubricant D. None of the above - 7. Which of the following is not a function of lubrication? - A. It reduces wearing & tearing of moving parts - B. It enhances the durability of machines. - C. It increases the efficiency of engines. - D. It enhances the loss in energy. | Answers to Chapter –11: Lubricants | | | | | | | | | | |------------------------------------|---|---|---|---|---|---|--|--|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | D | D | В | С | Α | С | D | | | | Prepared By: G Badhei, Sr. Lect. (Chemistry), GP Bargarh #### Chapter-12: FUEL - 1. Which of the following is a renewable source of energy? - B. Petrol A. Coal C. Wood Diesel - 2. Which of the following is not a characteristic of good fuel? - B. High Calorific value A. Non-volatile - C. High Ignition temperature D. Low cost - 3. The quantity of heat liberated by the complete combustion of a unit mass or unit volume of fuel is called . - A. Ionization value - B. Calcination value - C. Calorific value - D. Heat value - 4. Which of the following has highest calorific value? - A. Kerosene B. Wood C. Petrol D. Coal - 5. Which of the following is a unit of calorific value? - C. m/S²D. A. N/m² B. KJ/Kg None - 6. The form of coal which contains highest percentage of carbon is____ - A. Lignite - B. Anthracite - C. Bituminous - D. Peat - 7. The form of coal which contains lowest percentage of carbon is____ - A. Lignite - B. Anthracite - C. Bituminous - D. Peat - 8. Various components of petroleum are separated from each other by the process called - A. Crystallization - B. Distillation - C. Fractional distillation - D. Liquation - 9. Producer gas is a mixture of: - A. CO₂, N₂, O₂, H₂ - $CO, N_2, O_2,$ - SO₂ - C. N₂, CO₂, H₂, SO₂ - D. N₂,CO₂,H₂, - 10. The major component of producer gas is? D. CO₂ - A. H₂ - B. N₂ C. CO B. - 11. The major component of Water gas is : - A. H₂ - B. N₂ - C. CO - D. CO₂ - 12. The calorific value of producer gas is: - A. 1,300 kca/m³ - 2,800 kcl/m3 C. 2,300 kca/m³ 1,800 D. kca/m3 13. The major component of CNG is: B. CH₄ C. C₂H₂ D. A. C_2H_6 C_4H_{10} | Answers to Chapter −12: Fuel | | | | | | | | | | |------------------------------|----|----|---|---|---|---|---|---|----| | 1 2 3 4 5 6 7 8 9 1 | | | | | | | | | 10 | | С | С | С | С | В | В | D | С | D | В | | 11 | 12 | 13 | | | | | | | | | Α | Α | В | | | | | | | | #### **Chapter -13: POLYMER CHEMISTRY** - 1. The single repeating unit of a polymer is - A. Polymer B. Homomer C. Monomer D. Unit - 2. The polymer containing monomer units of identical chemical composition is called: - A. Co-polymer - B. Homopolymer - C. Identical polymer D. Isomer - 3. The polymer containing monomer units of different chemical composition is called: - A. Co-polymer - B. Homopolymer - C. Identical polymer D. Isomer - 4. Degree of polymerization is the no. of ____ present in a polymer. - A. polymers - B. Monomers - C. Identical monomers - D. Isomers - 5. Polythene is an example of _____ - B. Co-polymer - B. Homopolymer - C. Identical polymer D. Isomer - 6. Bakelite is an example of . A. Co-polymer - B. Homopolymer - C. Identical polymer D. Isomer - 7. The polymer obtained by the polymerization of phenol and formaldehyde is: - A. Teflon - B. Polyester - C. Bakelite - D. Nylon 6, 6 - 8. The monomer used to prepare PVC is: - A. Vinyl nitrite - B. Vinyl Chloride - C. Vinyl Chlorate - D. Phenol - 9. Bakelite is a - B. Homopolymer - A. Natural polymer C. Thermoplastic - D. Thermosetting - 10. PVC is a _____ polymer. - A. Natural - B. Co-polymer - C. Thermoplastic - D. Thermosetting - 11. Which of the following polymer can be remoulded? - A. Bakelite - B. Terylene - B. Urea-formaldehyde resin - D. PVC - 12. Which of the following polymer can't be remoulded? - A. polythene - B. Nylon - C. PVC - D. Bakelite - 13. Which of the following is a homopolymer? - A. Bakelite - B. Terylene - C. Nylon - D. PVC - 14. Which of the following is a copolymer? - B. PVC - B. Terylene - C. Polythene - D. Polystyrene - 15. Thermosetting plastics: - A. Can be remoulded. - B. Are formed by addition polymerization. - C. Are soluble in most of the solvents. - D. Are condensation polymers. - 16. Thermoplastics polymers: - A. Can be remoulded. - B. Are condensation polymers. - C. Are insoluble in most of the solvents. - D. Have three dimensional structures. - 17. Which of the following is a monomer of Bakelite? - A. Acetic acid - B. Formaldehyde - C. Ethene - D. vinyl chloride - 18. The monomer of PVC is ____ - A. Vinyl chlorate - B. Phenol - C. Vinyl chloride - D. Formaldehyde. - 19. The IUPAC name of Vinyl chloride is - A. 1-Chloroethane - B. 1-Chloroethene - C. 2-Chloroethane - D. 2-Chloroetyhene - 20. The chemical process in which a large no. of smaller molecular units are joined together to get a bigger unit is called: - A. Calcination - B. Distillation - C. Polymerisation - D. Decomposition. - 21. The monomer unit present in natural rubber is - A. Isoprene - B. Neoprene - C. Chloroprene - D. Disprene - 22. What is the IUPAC name of the monomer present in natural rubber? - A. 2-Methylbuta-1,3-diene - B. 3-Methylbuta-1,3-dieneC. 2-Chlorolbuta-1,3-diene - D. 3-Chlorobuta-1,3-diene - 23. The chemical name of natural rubber is_____. - A. Polytrans-isoprene - B. Polycis-isoprene - C. Polytrans-chloroprene - D. Polycis-chloroprene - 24. The chemical process in which raw rubber is heated to $100^{\circ} 140^{\circ}$ C with 4% to 6% sulphur or sulphur containing compound is called - A. Calcination - B. Distillation - C. Vulcanization - D. Sublimation - 25. During vulcanization of natural rubber _____ are formed between the carbon chains. - A. vanadium crosslinks - B. Silicon crosslinks - C. Phosphorous crosslinks - D. Sulphur crosslinks. | Answers to Chapter –9: Hydrocarbons | | | | | | | | | | | |-------------------------------------|----|----|----|----|----|----|----|----|----|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | С | Α | D | С | Α | С | Α | Α | С | С | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | Α | D | Α | С | С | В | В | С | С | В | | ### **CHEMICALS IN AGRICULTURE** - 1. Which of the following is an important
insecticide? - A. Bleaching powder - B. Gammaxane - C. Paraquat - D. Mancozeb - 2. Which of the following is an important fungicide? - A. Rhizobium - B. Gammaxane - C. Paraquat - D. Mancozeb - 3. Which of the following is an important biofertilizer? - A. Rhizobium - B. Gammaxane - C. Paraquat - D. Mancozeb - 4. Which of the following is an important herbicide? - A. Rhizobium - B. Gammaxane - C. Paraquat - D. Mancozeb - 5. The chemical substances used to kill unwanted weeds/plants are called _____. - A. Fungicides - B. Herbicides - C. Insecticides - D. Bactericides - 6. Carbamate is an important _____. - A. Fungicides - B. Herbicides - C. Insecticides - D. Bactericides - 7. Blue green algae are important _____. - A. Fungicides - B. Herbicides - C. Insecticides - D. Biofertilizers - 8. DDT is an important _____. - A. Fungicide - B. Herbicide - C. Insecticide - D. Bactericide | Answers to Chapter –9: Hydrocarbons | | | | | | | | | | | |-------------------------------------|----|----|----|----|----|----|----|----|----|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | С | Α | D | С | Α | С | Α | Α | С | С | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | Α | D | Α | С | С | В | В | С | С | В | | Sr. Lect. (Math & Science)-cum-HOD Govt. Polytechnic, Bargarh