Discipline: Math & Science	Semester:- 1st & 2 nd Semester	Name of the Teaching Faculty:- Miss Pooja Sahu , Lect. in Physics
Subject:- Engineering Physics Practical	No. of Days/ week Class Allotted:-60	
Week	Class Day	Practical Topics
1 st	1 st	Safety instructions to the students.
	2 nd	Precautions to be taken during practical classes.
2 nd	1 st	Acquaintance of the students with the laboratory apparatus.
	2 nd	Acquaintance of the students with the basic concept & formulas.
3 rd	1 st	To find the cross-sectional area of a wire using a screw gauge.(Theory)
	2 nd	To find the cross-sectional area of a wire using a screw gauge.(Practical)
4 th	1 st	To find the cross-sectional area of a wire using a screw gauge.(Practical)
	2 nd	To find the thickness and volume of a glass piece using a screw gauge. (Theory)
5 th	1 st	To find the thickness and volume of a glass piece using a screw gauge. (Practical)
	2 nd	To find the thickness and volume of a glass piece using a screw gauge. (Practical)
6 th	1 st	To find the volume of a solid cylinder using a Vernier Calipers. (Theory)
	2 nd	To find the volume of a solid cylinder using a Vernier Calipers.(Practical)
7 th	1 st	To find the volume of a solid cylinder using a Vernier Calipers.(Practical)
	2 nd	To find the volume of a hollow cylinder using a Vernier Calipers (Theory)
8 th	1 st	To find the volume of a hollow cylinder using a Vernier Calipers (Practical)
	2 nd	To find the volume of a hollow cylinder using a Vernier Calipers. (Practical)
9 th	1 st	To determine the radius of curvature of convex surface using a Spherometer.
		(Theory).
	2 nd	To determine the radius of curvature of convex surface using a Spherometer.
		(Practical)
10 th	1 st	To determine the radius of curvature of convex surface using a Spherometer.
		(Practical)
	2 nd	To determine the radius of curvature of concave surface using a Spherometer.
		(Theory)
11 th	1 st	To determine the radius of curvature of concave surface using a Spherometer.
	_	(Practical)
	2 nd	To determine the radius of curvature of concave surface using a Spherometer.
	_	(Practical)
12 th	1 st	To find the time period of a simple pendulum and determine acceleration due
	-	to gravity.(Theory)
	2 nd	To find the time period of a simple pendulum and determine acceleration due
		to gravity.(Practical)
13 th	1 st	To find the time period of a simple pendulum and determine acceleration due
	-	to gravity.(Practical)
	2 nd	To determine the angle of Prism.(Theory)

14 th	1 st	To determine the angle of Prism.(Practical)
	2 nd	To determine the angle of Minimum Deviation by I-D curve method.(Theory)
15 th	1 st	To determine the angle of Minimum Deviation by I-D curve method.(Practical
	2 nd	To determine the angle of Minimum Deviation by I-D curve method.(Practical)
16 th	1 st	To trace lines of force due to a bar magnet with North pole pointing North & Locate the neutral points. (Theory)
	2 nd	To trace lines of force due to a bar magnet with North pole pointing North & Locate the neutral points. (Practical)
17 th	1 st	To trace lines of force due to a bar magnet with North pole pointing South & Locate the neutral points. (Theory)
	2 nd	To trace lines of force due to a bar magnet with North pole pointing South & Locate the neutral points. (Practical)
18 th	1 st	To verify Ohm's Law by Ammeter – Voltmeter method. (Theory)
	2 nd	To verify Ohm's Law by Ammeter – Voltmeter method.(Practical)