LESSON PLAN FOR STRUCTURAL DESIGN -1

Discipline Civil Engg.	Semester: 4 th	Name of teaching faculty: Sanjeeb Meher
Subject:	Nos of days per week	
STRUCTURAL DESIGN -1	class allotted: 5	
Week	Class day	Theory topics
DEC 2 ND	1 ST	Working stress method (WSM)
Week		1.1 Objectives of design and detailing. State the different methods of design of concrete structures.
	2 ND	Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. Permissible stresses, assumption in
		W.S.M.
	3 RD	Flexural design and analysis of single reinforced sections from first principles.
	4th	Concept of under reinforced, over reinforced and balanced sections.
	5th	Advantages and disadvantages of WSM, reasons for its obsolescence
DEC 3 rd Week	1 ST	Philosophy Of Limit State Method (LSM) 2.1 Definition, Advantages of LSM over WSM,
Week	2 ND	IS code suggestions regarding design philosophy.
	3 RD	Types of limit states, partial safety factors for materials strength,
	4 TH	characteristic strength, characteristic load, design load,
	5 TH	loading on structure as per I.S. 875
January 1 st week	1 st	Study of I.S specification regarding spacing of reinforcement in slab, ,
	2 ND	cover to reinforcement in slab
January 2nd week	1 ST	beam column & footing, minimum reinforcement in slab, beam & column,
	2 ND	lapping, anchorage, effective span for beam & slab.
	3 RD	Analysis and Design of Single and Double Reinforced Sections (LSM)
	4 TH	3.1 Limit state of collapse (flexure), Assumptions, Stress-Strain relationship for concrete and steel, neutral axis, stress block diagram and strain diagram for singly reinforced section.
	5 TH	Concept of under- reinforced, over-reinforced and limiting section, neutral axis

		co-efficient
January 3rd	1 ST	limiting value of moment of resistance and limiting
week		percentage of
		steel required for limiting singly R.C. section.
	2 ND	Analysis and design: determination of design constants,
		moment of resistance
		and area of steel for rectangular sections
	3 RD	Necessity of doubly reinforced section
	4 TH	design of doubly reinforced rectangular
		section
	5 TH	Shear, Bond and Development Length (LSM)
		4.1 Nominal shear stress in R.C. section,
January 4th	1 ST	design shear strength of concrete,
week		maximum shear stress, design of shear reinforcement,
	2 ND	minimum shear
		reinforcement, forms of shear reinforcement.
	3 RD	Bond and types of bond, bond stress, check for bond stress,
	4 TH	development
		length in tension and compression, anchorage value for hooks 900 bend
	5 TH	450 bend standards lapping of bars, check for
		development length.
January 5th	1 ST	Numerical problems on deciding whether shear
week		reinforcement is required or
	No	not, check for adequacy of the section in shear.
	2 ND	Design of shear
		reinforcement; Minimum shear reinforcement in beams
		(Explain through
		examples only).
	3 RD	Analysis and Design of T-Beam (LSM)
		5.1 General features, advantages,
	4th	effective width of flange as per IS: 456-2000
		code provisions.
	5th	Analysis of singly reinforced T-Beam,
February	1 ST	strain diagram & stress diagram, depth
2nd week		of neutral axis,
	2 ND	moment of resistance of T-beam section with neutral axis
		lying
		within the flange.
	3 RD	Simple numerical problems on deciding effective flange
		width. (Problems only
		on finding moment of resistance of T-beam section when
		N.A. lies within or up
		I am a man an ah

		to the bottom of flange shall be asked in written examination)
	4 TH	Simple numerical problems on deciding effective flange width. (Problems only on finding moment of resistance of T-beam section when
		N.A. lies within or up
		to the bottom of flange shall be asked in written
		examination)
	5 TH	Analysis and Design of Slab and Stair case (LSM).
February 3rd week	1 ST	6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear
	2 ND	Design of one-way cantilever slabs
	3 RD	cantilevers chajjas for flexure check for deflection control
	4 TH	check for development length and shear.
February 4th week	1 ST	Design of two-way simply supported slabs for flexure with corner free to lift.
	2 ND	Design of two-way simply supported slabs for flexure with corner free to lift.
	3 RD	Design of dog-legged staircase
	4th	Design of dog-legged staircase
	5th	Detailing of reinforcement in stairs spanning longitudinally.
February 5th week	1 ST	Design of Axially loaded columns and Footings (LSM)
	2 ND	Assumptions in limit state of collapse- compression.
	3 RD	Definition and classification of columns
	4 TH	effective length of column.
	5 TH	Specification for minimum reinforcement
March 1st week	1 ST	cover, maximum reinforcement
	2 ND	number of bars in rectangular
	3 RD	number of bars in square and circular sections
	4 TH	diameter and spacing of lateral ties.
	5 TH	Analysis and design of axially loaded short square
March 2 nd week	1 ST	Analysis and design of axially loaded short square, rectangular
	2 ND	Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	3 RD	Types of footing,
March 3 rd week	1 ST	Design of isolated square column footing of uniform thickness for flexure and shear.

	I ND	
	2 ND	Design of isolated square column footing of uniform
		thickness for flexure and shear
	3 RD	Design of isolated square column footing of uniform
		thickness for shear
	4 TH	Design of isolated square column footing of uniform
		thickness for shear
	5 TH	Doubt clearing
March 4 th	1 ST	Doubt clearing
week		
	2 ND	Revision
	3 RD	Revision
	4 TH	Question discussion
	5 TH	Question discussion