ACADEMIC SESSION: WINTER-2022

Discipline :civil engg	Semester:3rd	Name of the Teaching Faculty : SANJEEB MEHER
Subject: structural mechanics	No. of Days / Week class allotted: 5	No. of Weeks : 15
Week	Class day	Theory/Practical Topics:
1 st	1 st	Pacis Principle of Machanies: Force Moment support conditions
	2 nd	Basic Principle of Mechanics: Force, Moment, support conditions Conditions of equilibrium, C.G & MI
	3 _{rd}	Free body diagram
	4 th	Review of CG and MI of different sections
	5 th	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity
	1 st	Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability.
	2 nd	Creep, Fatigue, Tenacity, Durability
2 nd	3 rd	Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains
	4 th	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's
	5 th	ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants
	1 st	Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material
3 rd	2 nd	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress
3.1	3 rd	Breaking stress, Percentage elongation, Percentage reduction in area,
	4 th	Significance of percentage elongation and reduction in area of cross section
	5 th	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight
	1 st	
	2 nd	
	3 rd	Durga Puja Holiday
4th	4 th	
	5 th	
5 th	1 st	Principal stresses and strains: Occurrence of normal and tangential stresses,
	2 nd	Concept of Principal stress and Principal Planes
	3 rd	major and minor principal stresses and their orientations
	4 th	Mohr's Circle and its application to solve problems of complex stresses
	5 th	Problems
	1 st	Stresses in beams due to bending: Bending stress in beams

1	<u>.</u>	
	2 nd	Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam
6 th	3 rd	Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	4 th	Shear stresses in beams: Shear stress distribution in beams of rectangular,
	5 th	circular and standard sections symmetrical about vertical axis. Stresses in shafts due to torsion: Concept of torsion, basic assumptions of
	5***	pure torsion
	1 st	torsion of solid and hollow circular sections, polar moment of inertia,
	2 nd	torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
7 th	3 rd	Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses
	4 th	Maximum and Minimum stresses in Sections, Conditions for no tension,
-	5 th	Limit of eccentricity, Middle third/fourth rule, Core or Kern for square,
	1 st	rectangular and circular sections, chimneys, dams and retaining walls Columns and Struts: Definition, Short and Long columns
-	2 nd	End conditions, Equivalent length / Effective length, Slenderness ratio,
-		Axially loaded short and long column, Euler's theory of long columns,
8 th		Critical load for Columns with different end conditions
_	5 th	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL)
	1 st	Types of Supports: Simple support, Roller support, Hinged support, Fixed support,
-	2 nd	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction
9 th	3 rd	Types of Beams based on support conditions: Calculation of support
-	4 th	reactions using equations of static equilibrium Shear Force and Bending Moment: Signs Convention for S.F. and B.M
-	5 th	S.F and B.M of general cases of determinate beams with concentrated load and udl only
	1 st	S.F and B.M diagrams for Cantilevers
	2 nd	Simply supported beams and Over hanging beams
1 Oth	3 rd	Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M
10 th	4 th	problems
	5 th	Slope and deflection
		Introduction: Shape and nature of elastic curve (deflection curve);
	1 st	Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.
11 th	2 nd	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	3 rd	Problems
	4 th	problems
	5 th	Class test
	1 st	Indeterminacy in beams
	2 nd	Problems on indeterminacy
ļ	3 rd	Principle of consistent deformation/compatibility
12 th	4 th	Analysis of propped cantilever
	5 th	problems

	2 nd	problems
	3 rd	SF and BM diagrams (point load and udl covering full span)
13 th	4 th	problems
	5 th	Trusses
		Introduction: Types of trusses, statically determinate and
		indeterminate trusses
	1 st	continue
	2 nd	degree of indeterminacy
	3 rd	Problems on degree of indeterminacy
14 th	4 th	stable and unstable trusses
	5 th	advantages of trusses.
	1 st	Analysis of trusses: Analytical method : Method of joints
	2 nd	problems
	3 rd	method of Section
15 th	4 th	problems
	5 th	Previous year question discussion