

LABORATORY MANUAL

OF

SIMULATION PRACTICE

ON

MATLAB

For

5th sem, Electrical Engg. (Diploma)

DEPARTMENT OF ELECTRICAL ENGINEERING

GOVERNMENT POLYTECHNIC, BARGARH

Prepared by:

Rashmita Gouda

Lecturer in Instrumentation & Control Engg.

LIST OF EXPERIMENTS IN MATLAB SIMULATION

SOFTWARE

1. Introduction to MATLAB programming:

1.1. Functions and operation using variables and arrays.

1.1.1. To learn algebraic, trigonometric and exponential manipulation.

1.1.2. To learn Arithmetic, Relational and Logic operator.

1.2. Matrix formation and its manipulation.

1.3. Vector manipulation:

1.3.1. Use of linspace to create vectors.

1.3.2. To create, add and multiply vectors.

1.3.3. Use of sin and sqrt functions with vector arguments.

1.4. Plotting:

1.4.1. Two dimensional Plots and sub plots

1.4.2. Label the plot and printing.

1.5. Write and execute a file to plot a circle, impulse, step, ramp, sine and cosine

functions. .

2. Introduction to SIMULINK:

2.1. Use of Commonly used blocks, Math operation block and Display block from

SIMULINK library.

2.2. Use of logical and relational operator block.

2.3. Use of Sim-Power system block to use Electrical sources, elements and

Power electronics devices.

2.4. SIMULATION:

2.4.1. Verification of Network theorems. (Any two)

2.4.2. Simulation of a half wave uncontrolled rectifier.

2.4.3. Simulation of 1-phase full bridge controlled rectifier.

2.4.4. Simulation of step-down chopper.

INTRODUCTION TO MATLAB:

▪ The name MATLAB stands for MATrix LAboratory. MATLAB was written

originally to provide easy access to matrix software developed by the

LINPACK (linear system package) and EISPACK (Eigen system package)

projects.

▪ MATLAB is a high-performance language for technical computing. It

integrates computation, visualization, and programming environment.

Furthermore, MATLAB is a modern programming language environment: it

has sophisticated data structures, contains built-in editing and debugging

tools, and supports object-oriented programming. These factors make

MATLAB an excellent tool for teaching and research.

▪ MATLAB has many advantages compared to conventional computer

languages (e.g., C, FORTRAN) for solving technical problems. MATLAB is

an interactive system whose basic data element is an array that does not require

dimensioning. The software package has been commercially available since

1984 and is now considered as a standard tool at most universities and

industries worldwide.

▪ It has powerful built-in routines that enable a very wide variety of

computations. It also has easy to use graphics commands that make the

visualization of results immediately available. Specific applications are

collected in packages referred to as toolbox. There are toolboxes for signal

processing, symbolic computation, control theory, simulation, optimization,

and several other fields of applied science and engineering.

▪ Starting MATLAB: you can enter MATLAB by double-clicking on the

MATLAB shortcut icon on your Windows desktop. When you start

MATLAB, a special window called the MATLAB desktop appears. The

desktop is a window that contains other windows. The major tools within or

accessible from the desktop are:

o The Command Window

o The Command History

o The Workspace

o The Current Directory

o The Help Browser

o The Start button

Fig:1 The graphical interface to the MATLAB workspace

When MATLAB is started for the first time, the screen looks like the one that

shownin the Figure 1.1. This illustration also shows the default configuration of

the MATLAB desktop. You can customize the arrangement of tools and

documents to suit your needs. Now, we are interested in doing some simple

calculations. We will assume that you have sufficient understanding of your

computer under which MATLAB is being run. You are now faced with the

MATLAB desktop on your computer, which contains the prompt (>>) in the

Command Window.

PROCEDURE:-

▪ Open MATLAB

▪ Open new M-file 21

▪ Type the program

▪ Save in current directory

▪ Compile and Run the program

▪ For the output see command window\ Figure window

EXPERIMENT NO.: 1(a)

AIM OF THE EXPERIMENT: Write a MATLAB script for solving the

algebraic equation ‘𝑥2 − 12𝑥 + 35 = 0’.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

Algebric functions:

solve(eqn, x) :

If eqn is an equation, solve(eqn, x) solves eqn for the symbolic variable x. Use

the == operator to specify the familiar quadratic equation and solve it using solve.

Syntax:

S = solve(eqn,var)

SCRIPT :

>> eqn = x^2-12*x+35==0 ;

>> s= solve(eqn);

>> disp(s(1));

>> disp(s(2));

Conclusion:

https://in.mathworks.com/help/symbolic/solve.html#d120e166754

EXPERIMENT NO.: 1(b)

AIM OF THE EXPERIMENT: Write a MATLAB script to perform

trigonometric manipulation by using trigonometric functions.

SOFTWARE REQURIED:-

1. MATLAB R2018a.

THEORY:

Trigonometric functions:

The trigonometric functions in MATLAB calculate standard trigonometric values

in radians or degrees.

Functions uses

sin() Sine of argument in radians

sind() Sine of argument in degrees

cos() Cosine of argument in radians

cosd() Cosine of argument in degrees

tan() Tangent of argument in radians

tand() Tangent of argument in degrees

csc() Cosecant of input angle in radians

cscd() Cosecant of argument in degrees

sec() Secant of angle in radians

secd() Secant of argument in degrees

cot() Cotangent of angle in radians

cotd() Cotangent of argument in degrees

deg2rad() Convert angle from degrees to radians

rad2deg() Convert angle from radians to degrees

SCRIPT:

>> x=pi;

>>a=sin(x)

>>b=cos(x/2)

>>c=tan(x/4)

>>d=sin (x/2+x/6)

Conclusion:

EXPERIMENT NO.: 1(c)

AIM OF THE EXPERIMENT: Write a MATLAB script to find the value of

𝑒10 using exponential function.

SOFTWARE REQURIED:-

1. MATLAB R2018a.

THEORY:

Exponential Functions:

Syntax :

y = exp(x)

This function returns the exponential ex for each element in array x.

SCRIPT:

>>x=10;

>>y=exp(x)

Conclusion:

EXPERIMENT NO.: 2(a)

AIM OF THE EXPERIMENT: Write a script to perform different arithmetic

operations using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

 The basic arithmetic operators used in MATLAB are listed below:

Operators Uses

+ Addition

- Subtraction

* Multiplication

/ Division

^ Power

SCRIPT:

a=5;

b=10;

r=a+b

s=a-b

t=a*b

u=a/b

v=a^3

Conclusion:

EXPERIMENT NO.: 2(b)

AIM OF THE EXPERIMENT: Write a script to compare two numbers using

MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

The relational operators used in MATLAB are listed below:

Operators Uses

== Determine equality

~= Determine inequality

> Determine greater than

>= Determine greater than or equal to

< Determine less than

<= Determine less than or equal to

SCRIPT:

a= input(‘Enter the 1st number’)

b= input(‘Enter the 2nd number’)

if (a>b)

fprintf(‘%d is larger\n’ ,a);

else

fprintf(‘%d is larger\n’ ,b);

end

Conclusion:

https://in.mathworks.com/help/matlab/ref/eq.html
https://in.mathworks.com/help/matlab/ref/ne.html
https://in.mathworks.com/help/matlab/ref/gt.html
https://in.mathworks.com/help/matlab/ref/ge.html
https://in.mathworks.com/help/matlab/ref/lt.html
https://in.mathworks.com/help/matlab/ref/le.html

EXPERIMENT NO.: 2(c)

AIM OF THE EXPERIMENT: Write a script using logical operators in

MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

The basic logical operators used in MATLAB are listed below:

Operators Uses

&& Logical AND operations between two expressions / statements

|| Logical OR operations between two expressions / statements

& Find logical AND

~ Find logical NOT

| Find logical OR

xor Find logical exclusive-OR

all Determine if all array elements are nonzero or true

any Determine if any array elements are nonzero

find Find indices and values of nonzero elements

islogical Determine if input is logical array

logical Convert numeric values to logicals

true Logical 1 (true)

false Logical 0 (false)

SCRIPT:

a= input(‘Enter the 1st number’)

b= input(‘Enter the 2nd number’)

if (a>0 && b>0)

disp(‘Both the numbers are positive integers’);

else

disp(‘Both the numbers are not positive integers’);

end

Conclusion:

https://in.mathworks.com/help/matlab/ref/and.html
https://in.mathworks.com/help/matlab/ref/not.html
https://in.mathworks.com/help/matlab/ref/or.html
https://in.mathworks.com/help/matlab/ref/xor.html
https://in.mathworks.com/help/matlab/ref/all.html
https://in.mathworks.com/help/matlab/ref/any.html
https://in.mathworks.com/help/matlab/ref/find.html
https://in.mathworks.com/help/matlab/ref/islogical.html
https://in.mathworks.com/help/matlab/ref/logical.html
https://in.mathworks.com/help/matlab/ref/true.html
https://in.mathworks.com/help/matlab/ref/false.html

EXPERIMENT NO.: 3(a)

AIM OF THE EXPERIMENT: Write a script for creation of matrix in

MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

All MATLAB variables are multidimensional arrays, no matter what type of data.

A matrix is a two-dimensional array often used for linear algebra.

Array Creation:

• Specific set of data are arranged as elements in a matrix using a set of square

brackets ([…..]).

• A single row of data has spaces or commas (,) in between the elements and

semicolon (;) is used to separate the rows.

• Matrix of all zeros can be created by function zeros(m,n).

• Matrix of all ones can be created by function ones(m,n).

• Matrix of random numbers can be created by function rand(m,n).

(Where 𝑚 × 𝑛 is the dimension of matrix)

SCRIPT:

a = [1,2,3;11,10,15;1,0,4]

b= zeros(2,3)

c= ones(2,2)

d= rand(3,1)

Conclusion:

EXPERIMENT NO.: 3(b)

AIM OF THE EXPERIMENT: Write a script to find transpose, inverse and

determinant of matrix a = [
1

11
2 3

10 9
8 7 6

]

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• If A is a matrix then transpose of the matrix can be found by A’.

• inv() function is used to find inverse of a matrix.

• det() function is used to find determinant of a matrix.

SCRIPT:

a = [1,2,3;11,10,9;8,7,6]

b = a’

c = inv(a)

d = det(a)

Conclusion:

EXPERIMENT NO.: 3(c)

AIM OF THE EXPERIMENT: Write a script for addition, subtraction,

multiplication division of two matrixes using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• MATLAB allows to process matrixes using arithmetic operators (‘+’, ‘-’,

‘*’, ‘/’) or functions.

SCRIPT:

a= [1, 2, 3; 4, 5, 6; 7, 8, 9];

b= [4, 6, 9; 3, 3, 1; 4, 11, 15];

w=a+b

x=a-b

y=a*b

z=a/b

Conclusion:

EXPERIMENT NO.: 4(a)

AIM OF THE EXPERIMENT: Write a MATLAB script for creating two

vectors using linspace function and perform addition and multiplication

operations of the two vectors.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• Row vector can be created by using linspace() function. This function takes

3 arguments i.e. initial limit, final limit and no. of elements. If no of

elements is not specified then by default 100 elements are created.

• MATLAB allows to process vectors using arithmetic operators (‘+’, ‘-’,

‘*’, ‘/’) or functions.

• For element to element multiplication ‘.*’ is used between two vectors.

SCRIPT:

a= linspace(1,10,5)

b=linspace(2,25,5)

x=a+b

y=a.*b

z=a*b’

Conclusion:

EXPERIMENT NO.: 4(b)

AIM OF THE EXPERIMENT: Write a MATLAB script for using sin and sqrt

functions with vector arguments.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• sqrt(X) returns the square root of each element of the array X. For the

elements of X that are negative or complex, sqrt(X) produces complex

results.

• sin(X) returns the sin of each element of the array X in radian.

SCRIPT:

a= [1, 4, 9, 16, 25, 28]

b= sqrt(a)

x= [0, pi/2, pi/4, pi]

y=sin(x)

EXPERIMENT NO.: 5(a)

AIM OF THE EXPERIMENT: Write a MATLAB script to plot sine and cosine

functions and label it.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• plot(x,y) function is used to plot 2-D graphs. Where x is the x-axis variable

and y is the y-axis variable.

• xlabel(‘text’) and ylabel(‘text’) are used to label the x-axis and y-axis

respectively.

• Title(‘text’) function is used to label the title of 2-D graph.

SCRIPT:

a=linspace(0,pi*4);

b=sin(a);

c=cos(a);

plot(a,b);

plot(a,c);

hold off

xlabel(‘Time Period’);

ylabel(‘Amplitude’);

title(‘sine and cosine function’);

SIMULATION OUTPUT:

Conclusion:

A
m

p
lit

u
d

e

EXPERIMENT NO.: 5(b)

AIM OF THE EXPERIMENT: Write a MATLAB script to subplot sine, cosine

and tangent functions.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• subplot(m,n,p) function is used to divide the graph into 𝑚 × 𝑛 grids.

Where, m= no. of rows

 n= no of columns

 p= position of the grid

SCRIPT:

a= linspace(0,2*pi,50);

x=sin(a);

y=cos(a);

z=tan(a);

subplot(2,3,1);

plot(a,x);

xlabel(‘t’);

ylabel(‘sint’);

label(‘sine plot’);

subplot(2,3,3);

plot(a,y);

xlabel(‘t’);

ylabel(‘cost’);

label(‘cosine plot’);

subplot(2,3,5);

plot(a,z);

xlabel(‘t’);

ylabel(‘tant’);

label(‘tan plot’);

SIMULATION OUTPUT:

Conclusion:

EXPERIMENT NO.: 6(a)

AIM OF THE EXPERIMENT: Write a script to plot a circle with centre at

point (5,7) and radius 2 ,by using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

For any point (x,y) on the circle with centre at (a,b)

𝑥 = 𝑟𝑐𝑜𝑠𝜃 + 𝑎

𝑦 = 𝑟𝑠𝑖𝑛𝜃 + 𝑏

Where, r is the radius of the circle and 𝜃 angle varies from 0 to 2𝜋.

SCRIPT:

r=2;

theta= linspace(0,2*pi);

x= r * cos(theta) + 5;

y= r * sin(theta) + 7;

plot(x,y);

title(‘circle plot’);

SIMULATION RESULT:

Conclusion:

(a,b)

𝜃
𝑟

EXPERIMENT NO.: 6(b)

AIM OF THE EXPERIMENT: Write a script to plot an unit Ramp function by

using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

The unit Ramp signal is denoted by r(t)

• It is defined as r(t) = {t, t⩾0 and 0, t<0

• Area under unit ramp is unity.

SCRIPT:

x=linspace(0,100)

y=1*x;

plot(x,y);

xlabel(‘t’);

ylabel(‘r(t)’);

title(‘Ramp function plot’);

SIMULATION RESULT:

Conclusion:

r(
t)

EXPERIMENT NO.: 6(c)

AIM OF THE EXPERIMENT: Write a script to plot a unit Step function by

using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

• A function that increases or decreases abruptly from one constant value to

another is called as Step function.

• heaviside(x) function in MATLAB evaluates the Heaviside step function

(also known as the unit step function) at x . The Heaviside function is a

discontinuous function that returns 0 for x < 0 ,

 1/2 for x = 0 ,

 and 1 for x > 0 .

SCRIPT:

x=linspace(-10,20);

y=heaviside(x);

plot(x,y);

xlabel(‘t’);

ylabel(‘r(t)’);

title(‘Step function plot’);

SIMULATION RESULT:

Conclusion:

f(
x

)

x

EXPERIMENT NO.: 6(d)

AIM OF THE EXPERIMENT: Write a script to plot an Impulse, unit step and

ramp functions by using MATLAB software.

SOFTWARE REQURIED:

1. MATLAB R2018a.

THEORY:

An ideal impulse function is a function that is zero everywhere but at the origin

the amplitude is infinite.

• A function that increases or decreases abruptly from one constant value to

another is called as Step function.

• The unit Ramp signal is denoted by r(t)

o It is defined as r(t) = {t, t⩾0 and 0, t<0

o Area under unit ramp is unity.

SCRIPT:

t = (-1:0.01:1)';

impulse = t==0;

unitstep = t>=0;

ramp = t.*unitstep;

plot(t,[impulse unitstep ramp])

SIMULATION RESULT:

Conclusion:

INTRODUCTION TO SIMULINK

Simulink is a block diagram environment for multi-domain simulation and

Model-Based Design. It supports system-level design, simulation, automatic code

generation, and continuous test and verification of embedded systems. Simulink

provides a graphical editor, customizable block libraries, and solvers for

modeling and simulating dynamic systems. It is integrated with MATLAB,

enabling you to incorporate MATLAB algorithms into models and export

simulation results to MATLAB for further analysis.

PROCEDURE:

Step-1:

Start MATLAB from the MATLAB toolstrip, click the Simulink button to

open the Simulink editor.

Step-2:

Click the Blank Model template to open the Simulink editor.

Step: 3

From the Simulation tab, select Save > Save as. In the File name text box, enter

a name for your model. For example, simple model. Click Save. The model is

saved with the file extension .slx.

Step: 4

Open Simulink Library Browser

Simulink provides a set of block libraries, organized by functionality in the

Library Browser. The following libraries are common to most workflows:

• Continuous — Blocks for systems with continuous states

• Discrete — Blocks for systems with discrete states

• Math Operations — Blocks that implement algebraic and logical equations

• Sinks — Blocks that store and show the signals that connect to them

• Sources — Blocks that generate the signal values that drive the model

From the Simulation tab, click the Library Browser button .

1. Set the Library Browser to stay on top of the other desktop windows. On the

Simulink Library Browser toolbar, select the Stay on top button . To

browse through the block libraries, select a category and then a functional area

in the left pane. To search all of the available block libraries, enter a search

term.

Step: 4

Add Blocks to a Model

To start building the model, browse the library and add the blocks.

Step: 5

Connect Blocks

Connect the blocks by creating lines between output ports and input ports.

Step: 6

Add Signal Viewer

To view simulation results, connect the first output to a Signal Viewer.

Step: 7

Run Simulation

After you define the configuration parameters, you are ready to simulate your

model.

In the Simulation tab, set the simulation stop time by changing the value in the

toolbar.

• The default stop time of 10.0 is appropriate for this model. This time value

has no unit. The time unit in Simulink depends on how the equations are

constructed. This example simulates the simplified motion of a car for 10

seconds — other models could have time units in milliseconds or years.

• To run the simulation, click the Run button .

• The simulation runs and produces the output in the viewer.

EXPERIMENT NO.: 7(a)
AIM OF THE EXPERIMENT: Study Commonly used blocks, Math operation

block , Relational operator and Display block from SIMULINK library.

SOFTWARE REQURIED:

1. MATLAB R2018a.

2. Simulink Editor Toolbox

THEORY:

Commonly Used Blocks are used to list a lot of blocks which are usually used.

Double-click on the Commonly Used Blocks icon in the main Simulink window

to bring up the Commonly Used window.

Bus Creator

The Bus Creator block combines a set of signals into a bus.

Bus Selector

The Bus Selector block outputs a specified subset of the elements of the bus at its

input. The block can output the specified elements as separate signals or as a new

bus.

Constant

The Constant block generates a real or complex constant value. The constant

output value is displayed in the middle of the block, with a default value of 1.

In order to examine these blocks, create a new model window (select New from

the File menu in the Simulink window or hit Ctrl+N).

To use this block, drag it from the Commonly Used Blocks window into your

new model window.

To change the constant output value, double-click on the block in your model

window to bring up the following dialog box.

Change the constant value field from 1 to some other value, say, 5, and close the

dialog box. Your model window will reflect the update by displaying a 5 in the

middle of the constant block.

Data Type Conversion

The Data Type Conversion block converts an input signal of any Simulink data

type to the data type you specify for the Output data type parameter. The input

can be any real- or complex-valued signal.

Delay

The Delay block delays an input u according to the Delay length parameter, which

you specify on the dialog box, or a delay length that a signal supplies to the input

port. This block is equivalent to the z-1 discrete-time operator.

Demux, Mux

The Mux (Multiplexer) block is used to combine two or more scalar signals into

a single vector signal. Similarly, a Demux (Demultiplexer) block breaks a vector

signal into scalar signal components. The number of vector components must be

specified in each case.

Discrete-Time Integrator

This is the discrete time approximation of a continuous-time integrator. The

approximation method can be specified as well as the initial condition and

saturation limits.

Gain

The Gain block multiplies the input by a constant value (gain). The input and the

gain can each be a scalar, vector, or matrix.

Ground

The Ground block connects to blocks whose input ports do not connect to other

blocks.

In1

Inport blocks are the links from outside a system into the system.

Integrator

The output of the Integrator is the integral of the input. An initial condition can

be specified, as well as saturation limits.

Logical Operator

The Logical Operator block performs the specified logical operation on its inputs.

An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

Out1

Outport blocks are the links from a system to a destination outside the system.

Product

By default, the Product block outputs the result of multiplying two inputs: two

scalars, a scalar and a nonscalar, or two nonscalars that have the same dimensions.

Relational Operator

By default, the Relational Operator block compares two inputs using

the Relational operator parameter that you specify. The first input corresponds

to the top input port and the second input to the bottom input port.

Saturation

The Saturation block imposes upper and lower limits on an input signal.

Scope

The Scope block displays inputs signals with respect to simulation time.

Subsystem

A Subsystem block represents a subsystem of the system that contains it.

The Subsystem block can represent a virtual subsystem or a nonvirtual

subsystem.

Sum

The Sum block performs addition or subtraction on its inputs. This block can add

or subtract scalar, vector, or matrix inputs. It can also collapse the elements of a

signal.

Switch

The Switch block passes through the first input or the third input based on the

value of the second input. The first and third inputs are called data inputs. The

second input is called the control input.

Terminator

Use the Terminator block to cap blocks whose output ports do not connect to

other blocks.

Vector Concatenate

The Concatenate block concatenates the signals at its inputs to create an output

signal whose elements reside in contiguous locations in memory.

MATH OPERATOR BLOCK

1. Output absolute value of input

•

2. Add or Subtract the inputs

3. Multiply or Divide

Relational Operator:

By default, the Relational Operator block compares two inputs using

the Relational operator parameter that you specify. The first input corresponds

to the top input port and the second input to the bottom input port.

SIMULATION:

Mathematical Operation:

Relational Operation

Logical Operation

CONCLUSION:

EXPERIMENT NO.: 8
AIM OF THE EXPERIMENT: Design & Verify Superposition theorem using

Simulink Editor toolbox.

SOFTWARE REQURIED:

1. MATLAB R2018a.

2. Simulink Editor

THEORY:

SIMULATION:

Fig.1: Circuit diagram when V1 ≠0& V2≠0

Fig.2: Circuit diagram when V1 ≠0& V2 =0

Fig.3: Circuit diagram when V1 =0& V2≠0

OBSERVATION:

PARAMETERS

WHEN

BOTH

V1 ≠0& V2≠0

(I)

WHEN

V1≠0 &

V2=0

(I1)

WHEN

V1=0&

V2≠0

 (I2)

Current through R3 (Theoretical

Values)

Current through R3 (Practical Values)

CONCLUSION:

EXPERIMENT NO.: 9
AIM OF THE EXPERIMENT: Design & Verify Thevenin’s’ theorem using

Simulink Editor toolbox.

SOFTWARE REQURIED:

1. MATLAB R2018a.

2. Simulink Editor

THEORY:

Thevenin’s Theorem: Any linear, bilateral network having a number of

voltage, current sources and resistances can be replaced by a simple equivalent

circuit consisting of a single voltage source in series with a resistance, where the

value of the voltage source is equal to the open circuit voltage and the resistance

is the equivalent resistance measured between the open circuit terminals with all

energy sources replaced by their ideal internal resistances.

8.1 CIRCUIT DIAGRAM:

Fig-8.1 Measurement of VTH or VOC Fig – 8.2 Measurement of RTH

Fig – 8.3 Measurement of IL (IL = VTH or VOC/ RTH +RL)

SIMULATION:

Fig.1: Measurement of V

Fig.1: Measurement of IL

OBSERVATION:

Parameters Theoretical Values Practical Values
IL

CONCLUSION:

EXPERIMENT NO.: 10
AIM OF THE EXPERIMENT: Design and simulate uncontrolled half wave

rectifier by using Simulink Editor.

SOFTWARE REQURIED:

3. MATLAB R2018a.

4. Simulink Editor

THEORY:

➢ Half-wave rectifiers only allow one half-cycle (positive or negative half-

cycle) of the AC voltage through and will block the other half-cycle on

the DC side, as seen below.

➢ But the diode is only part of it – a complete half-wave rectifier circuit

consists of 3 main parts:

o A transformer

o A resistive load

o A diode

➢ AC voltage is applied to the primary side of the step-down transformer and

we will get a low voltage at the secondary winding which will be applied

to the diode.

➢ During the positive half cycle of the AC voltage, the diode will be forward

biased and the current flows through the diode. During the negative half

cycle of the AC voltage, the diode will be reverse biased and the flow of

https://www.electrical4u.com/what-is-transformer-definition-working-principle-of-transformer/

current will be blocked. The final output voltage waveform on the

secondary side (DC) is shown in the below figure.

PROCEDURE:

➢ Open MATLAB and then open Simulink using the simulink icon on

MATLAB.

➢ Create a blank model.

➢ Click on the library browser icon on Simulink recently created model.

➢ From the library browsers, search all the components required to design

the full wave rectifier circuit and add them to the model.

SIMULATION:

OUTPUT:

CONCLUSION:

EXPERIMENT NO.: 11
AIM OF THE EXPERIMENT: Design and simulate 1-ϕ controlled full wave

rectifier by using Simulink Editor.

SOFTWARE REQURIED:

1. MATLAB R2018a.

2. Simulink Editor

THEORY:

➢ A full wave rectifier however uses both the positive and negative parts of

the AC wave to rectify. Again in this case we use switches with gate pulses

to be used as the firing angles of the rectified output.

➢ All four devices used are thyristors. The turn-on instants of these devices

are dependent on the firing signals that are given. Turn-off happens when

the current through the device reaches zero and it is reverse biased at least

for duration equal to the turn-off time of the device specified in the data

sheet.

➢ In positive half cycle thyristors T1 & T2 are fired at an angle α .

When T1 & T2 conducts Vo =Vs

IO=Vo/R= Vs/R

➢ In negative half cycle of input voltage, SCR's T3 &T4 are triggered at an

angle of (π+α). Here output current & supply current are in opposite

direction. T3 & T4 becomes off at 2π.

PROCEDURE:

➢ Open MATLAB and then open Simulink using the simulink icon on

MATLAB.

➢ Create a blank model.

➢ Click on the library browser icon on Simulink recently created model.

➢ From the library browsers, search all the components required to design

the full wave rectifier circuit and add them to the model. The required

components are: Pulse generator (1 no.), Detailed Thyristors (4 no.s),

voltage measurement (2 no.s), series RLC load (1 no.), scope (1 no.), AC

voltage source (1 no.), powegui (1 no.).

➢ Connect all the 4 thyristors in bridge configuration as shown in the figure.

➢ Pulse generator is connected to the input pin g of the thyristors.

➢ Connect the positive side of the AC source between the two serially

connected diodes and the negative side to other serially connected diodes

as shown in the figure below.

➢ After the source is connected we also need a ground to complete the circuit.

➢ Double click on the RLC branch and from the parameters block select the

resistor branch only and connect it as load in the circuit.

➢ powergui is a block which is the essentially required in Simulink to run an

electronic circuit.

➢ Connect one of the voltage measurement block across the load resistor as

are basically interested in measuring and viewing the voltage waveform

across the load resistor.

➢ Another voltage measurement block is connected across the input source.

➢ These two voltage measurement block outputs are connected at the input

ports of oscilloscope to visualize the waveform.

➢ Set the parameters of pulse generator.

➢ Run the model by pressing the run button.

➢ Double click on the scope to view the waveform.

SIMULATION:

Fig: Full wave bridge rectifier circuit designed in Simulink editor.

RESULT:

Figure: Input and Output waveforms of full wave bridge rectifier.

CONCLUSION:

EXPERIMENT NO.: 12
AIM OF THE EXPERIMENT: Design and simulate step-down chopper by

using Simulink Editor.

SOFTWARE REQURIED:

1. MATLAB R2018a.

2. Simulink Editor

THEORY:

A Step-down chopper is a static device that step downs its DC input voltage. The

value of average output DC voltage of this chopper is less than that of its fixed

DC input source voltage. This type of chopper is more common.

SIMULATION:

https://en.wikipedia.org/wiki/Semiconductor_device

OUTPUT:

CONCLUSION:

