GOVERNMENT POLYTECHNIC, BARGARH Department of ELECTRICAL AND ELECTRONICS Engineering

Semester: 3RD. DIPLOMA Subject: Digital Electronics

Branch: EEE

Session: (WINTER)
No of Period: 45 (3p/week)

Name of Faculty: NIRANJAN NAYAK

Week	Period	Topics to be covered		
1 st Week	1	Introduction to Logic Gates Basic logic gates: OR, AND, and NOT and its Truth tables.		
	2.6	Logic symbols, Logic voltage levels and Logic circuit design examples.		
	3	Integrated Circuits.		
2 nd Week	4	Design of NOR, NAND, Exclusive OR, and Exclusive NOR gates.		
	5	NOR and NAND gates used as inverters.		
	6	Fan-in and fan-out and Termination of unused inputs.		
3 rd Week	7	AND and OR gates constructed from NAND and NOR gates.		
	8	Boolean operations (OR, AND, NOT) and Representation of logic circuits by Boolean expressions.		
	9	Laws of Boolean algebra. 1. Double inversion: A"=A. 2. OR identities: A+0 = A, A+1=1, A+A=A, A+A'=1. 3. AND identities: A.0=0, A.1=A, A.A=A, A.A'=0. 4. Cumulative laws: A+B=B+A, A.B=B.A.		
4 th Week	10	5. Associative laws: (A+B) +C=A+ (B+C), (A.B).C=A.(B.C). 6. Distributive laws: A+ (B.C) = (A+B).(A+C), A.(B+C)=A.B+A.C. 7. DE Morgan's theorems. (A+B+C+)'=A'.B'.C', (A.B.C)'=A'+B'+C'		
	11	Applications to logic circuit simplifications and design.		
	12	Equivalent logic gates and NAND and NOR implementations of logic circuits.		
5 th Week	13	Standard forms of Boolean expressions that is Sum-of-products (SOP) and Product-of-sums (POS).		
	14	Karnaugh mapping.		
	15	Construction and working of Half adder and Full adder.		
6 th Week	16	Construction and working of Half Subtractor and Full Subtractor.		
	17	Construction and working of 4 bit adder.		
	18	Construction and working of Multiplexer (4:1) and De-multiplexer (1:4).		
7 th Week	19	Construction and working of Decoder and Encoder.		
	20	Construction and working of Digital comparator (3 Bit) and Seven segment Decoder.		
	21	Latches & Flip-Flops that is Basic latches NOR latch, NAND latch and Example uses of latches.		

8 th Week	22	Gated latches. 1. Gated S-R latch. 2. Gated D-latch.
	23	Introduction to Flip-flops: 1. Master-slave and edge-triggered principles. 2. S-R flip-flop.
	24	D-type flip-flop, J-K flip-flop.
9 th Week	25	T-type flip-flop and Flip-flop timing diagrams.
	26	Introduction to Counters.
	20	1. Circuit diagram and working principle of Binary counters.
	27	2. up-down counter (circuits, truth tables, and timing diagrams3. Asynchronous counters and ripple counter.
10 th Week	28	4. Synchronous counters.5. Decade counter.6. Module–n counter and its combinations.
	29	 7. Divide-by-n counters obtained from truncated binary sequences. 8. Synchronous counter design using D-type flip-flops. 9. Synchronous counter design using J-K flip-flops.
	30	Introduction to Shift Registers. 1. Circuit diagram, truth tables, and timing diagrams of Shift Registers.
11 th Week	31	Serial input shift register.
	32	Serial/parallel load shift register.
	33	Shift register counters. 1. Ring counter.
12 th Week	34	2. Self-starting ring counter.
	35	3. Johnson counters.
	36	Introduction to Semiconductor Memories. 1. Define the terms ROM, RAM, PROM, and EPROM. 2. Draw a typical memory cell.
13 th Week	37	Design a small diode matrix ROM to serve as a code conver
	38	Design and draw the logic diagram of a specified size memory system.
	39	Operating principle of dynamic memory.
14 th Week	40	Advantages and disadvantages of dynamic memory vs. statements.
	41	Difference between dynamic memory vs. static memory.
	42	Introduction to Sequential Circuit Design. 1. Combinational vs. Sequential circuits.
15 th week	43	Finite state machines- Concept only.
	44	Previous year question discussion.
그리고 어디에는 그렇게 되는 그를 하고 않는데 나를 하다.		